1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
3 years ago
5

Where does the energy of an earthquake originate?

Physics
2 answers:
viva [34]3 years ago
6 0
A is the correct answer.
expeople1 [14]3 years ago
4 0
A. Movement of tectonic plates... When these plates move they create an earthquake
You might be interested in
A constant voltage of 12.00 V has been observed over a certain time interval across a 1.20 H inductor. The current through the i
kiruha [24]

Answer:

The time is 0.5 sec.

Explanation:

Given that,

Voltage V= 12.00 V

Inductance L= 1.20 H

Current = 3.00 A

Increases rate = 8.00 A

We need to calculate change in current

\Delta A = 8.00-3.00= 5.00\ A

We need to calculate the time interval

Using formula of inductor

V=L\dfrac{\Delta A}{\Delta t}

\Delta t =\dfrac{L\Delta A}{V}

Where, \Delta A = change in current

V = voltage

L = inductance

Put the value into the formula

\Delta t=\dfrac{1.20\times5.00}{12.00}

\Delta t=0.5\ sec

Hence, The time is 0.5 sec.

5 0
3 years ago
1. What coefficients would balance the following equation?
maksim [4K]

Answer:

D. 4Al + 3O2 → 2Al2O3

Explanation:

Chemical reactions involves the chemical combination of two or more substances called REACTANTS to yield other substances called PRODUCTS. However, in accordance with the LAW OF CONSERVATION OF MASS, the amount of reactants must be equal to that of the products.

To accomplish this, the reaction must be BALANCED. A balanced equation is an equation in which the number of atoms of each element in the reactant side equals the number of atoms in the product side. In this reaction involving Aluminum and Oxygen to give Aluminum oxide as follows:

Al + 02 → Al2O3

A coefficient is used to balance the number of atoms on both sides of the equation as follows:

4Al + 3O2 → 2Al2O3

3 0
3 years ago
Read 2 more answers
A car is traveling at a velocity of 22 m/s when the driver puts on the brakes
Brums [2.3K]

The car’s velocity at the end of this distance is <em>18.17 m/s.</em>

Given the following data:

  • Initial velocity, U = 22 m/s
  • Deceleration, d = 1.4 m/s^2
  • Distance, S = 110 meters

To find the car’s velocity at the end of this distance, we would use the third equation of motion;

Mathematically, the third equation of motion is calculated by using the formula;

V^2 = U^2 + 2dS

Substituting the values into the formula, we have;

V^2 = 22 + 2(1.4)(110)\\\\V^2 = 22 + 308\\\\V^2 = 330\\\\V^2 = \sqrt{330}

<em>Final velocity, V = 18.17 m/s</em>

Therefore, the car’s velocity at the end of this distance is <em>18.17 m/s.</em>

<em></em>

Read more: brainly.com/question/8898885

8 0
2 years ago
Calculate the de Broglie wavelength of: a) A person running across the room (assume 180 kg at 1 m/s) b) A 5.0 MeV proton
solmaris [256]

Answer:

a

\lambda = 3.68 *10^{-36} \  m

b

\lambda_p = 1.28*10^{-14} \ m

Explanation:

From the question we are told that

   The mass of the person is  m =  180 \  kg

    The speed of the person is  v  =  1 \  m/s

    The energy of the proton is  E_ p =  5 MeV = 5 *10^{6} eV  = 5.0 *10^6 * 1.60 *10^{-19} = 8.0 *10^{-13} \  J

Generally the de Broglie wavelength is mathematically represented as

      \lambda = \frac{h}{m * v }

Here  h is the Planck constant with the value

      h = 6.62607015 * 10^{-34} J \cdot s

So  

     \lambda = \frac{6.62607015 * 10^{-34}}{ 180  * 1  }

=> \lambda = 3.68 *10^{-36} \  m

Generally the energy of the proton is mathematically represented as

         E_p =  \frac{1}{2}  *   m_p  *  v^2_p

Here m_p  is the mass of proton with value  m_p  =  1.67 *10^{-27} \  kg

=>     8.0*10^{-13} =  \frac{1}{2}  *   1.67 *10^{-27}  *  v^2

=>   v _p= \sqrt{\frac{8.0 *10^{-13}}{ 0.5 * 1.67 *10^{-27}} }

=>   v = 3.09529 *10^{7} \  m/s

So

        \lambda_p = \frac{h}{m_p * v_p }

so    \lambda_p = \frac{6.62607015 * 10^{-34}}{1.67 *10^{-27} * 3.09529 *10^{7} }

=>     \lambda_p = 1.28*10^{-14} \ m

     

5 0
3 years ago
On his way off to college, Russell drags his suitcase 19 m from the door of his house to the car at a constant speed with a hori
Mashcka [7]

Answer:

The work done on the suitcase is, W = 1691 J

Explanation:

Given data,

The force on the suitcase is, F  = 89 N

The distance Russell dragged the suitcase, S = 19 m

The work done on the suitcase by Russell is equal to the work done on the suitcase to overcome the friction

The work done on the suitcase by Russell is given by the formula

                          W = F · S

Substituting the given values,

                           W = 89 N x 19 m

                           W = 1691 J

Hence, the work done on the suitcase is, W = 1691 J

8 0
4 years ago
Other questions:
  • The three forces acting on a hot-air balloon that is moving vertically are its weight, the force due to air resistance and the u
    5·1 answer
  • is a climate cycle where the temperature of the Ocean changes because of movements of air and ocean currents. During this period
    8·1 answer
  • A rod of mass M and length L can rotate about a hinge at its left end and is initially at rest. A putty ball of mass m, moving w
    10·1 answer
  • Please help on this question​
    13·1 answer
  • How does the intensity of a sound wave change if the distance from the
    9·1 answer
  • Which characteristics describe a point charge
    7·1 answer
  • Rafael lives near a road at the bottom of the hill. His parents are concerned that soil will wash off the hill and rocks will fa
    6·1 answer
  • Highlight the correct terms:
    14·1 answer
  • How did Edwin Hubble's discovery that the Andromeda Nebula was at least 1 million light years away change scientists' view of th
    6·1 answer
  • All of the following are dimensions of progressive overload except multiple choice specificity. time. intensity. frequency.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!