Answer:
The time is 0.5 sec.
Explanation:
Given that,
Voltage V= 12.00 V
Inductance L= 1.20 H
Current = 3.00 A
Increases rate = 8.00 A
We need to calculate change in current

We need to calculate the time interval
Using formula of inductor


Where,
= change in current
V = voltage
L = inductance
Put the value into the formula


Hence, The time is 0.5 sec.
Answer:
D. 4Al + 3O2 → 2Al2O3
Explanation:
Chemical reactions involves the chemical combination of two or more substances called REACTANTS to yield other substances called PRODUCTS. However, in accordance with the LAW OF CONSERVATION OF MASS, the amount of reactants must be equal to that of the products.
To accomplish this, the reaction must be BALANCED. A balanced equation is an equation in which the number of atoms of each element in the reactant side equals the number of atoms in the product side. In this reaction involving Aluminum and Oxygen to give Aluminum oxide as follows:
Al + 02 → Al2O3
A coefficient is used to balance the number of atoms on both sides of the equation as follows:
4Al + 3O2 → 2Al2O3
The car’s velocity at the end of this distance is <em>18.17 m/s.</em>
Given the following data:
- Initial velocity, U = 22 m/s
- Deceleration, d = 1.4

To find the car’s velocity at the end of this distance, we would use the third equation of motion;
Mathematically, the third equation of motion is calculated by using the formula;

Substituting the values into the formula, we have;

<em>Final velocity, V = 18.17 m/s</em>
Therefore, the car’s velocity at the end of this distance is <em>18.17 m/s.</em>
<em></em>
Read more: brainly.com/question/8898885
Answer:
a

b

Explanation:
From the question we are told that
The mass of the person is 
The speed of the person is 
The energy of the proton is 
Generally the de Broglie wavelength is mathematically represented as

Here h is the Planck constant with the value

So

=> 
Generally the energy of the proton is mathematically represented as

Here
is the mass of proton with value 
=> 
=> 
=> 
So

so 
=> 
Answer:
The work done on the suitcase is, W = 1691 J
Explanation:
Given data,
The force on the suitcase is, F = 89 N
The distance Russell dragged the suitcase, S = 19 m
The work done on the suitcase by Russell is equal to the work done on the suitcase to overcome the friction
The work done on the suitcase by Russell is given by the formula
W = F · S
Substituting the given values,
W = 89 N x 19 m
W = 1691 J
Hence, the work done on the suitcase is, W = 1691 J