Answer:
b) in a direction that makes its potential energy decrease.
Explanation:
- As the electric field has the direction that would take a positive test charge under its sole influence, the positive test charge, will have an increase in its kinetic energy.
- Due to the conservation of energy, in absence of non-conservative forces, this increment must be equal and opposite to the change in electric potential energy, which will be always negative, independent of the sign of the charge.
I think this is because the particles don't know or care about each other,
and they act completely without any peer pressure. The direction in which
any one particle vibrates is completely random, and there is no connection
or influence among the particles. That means that any direction is just as likely
as any other direction for the next vibration, and they all wind up vibrating in
different directions. There is a tiny tiny tiny tiny chance that all of them could
vibrate in the same direction for just an instant; if that ever happened, the rock
would suddenly jump up in the air. That's actually true, but the chance is so tiny
that it hasn't ever happened yet. In fact, the chance is so tiny, that when scientists
do their calculations of particle vibrations, they assume that the chance is zero,
and that makes the calculations simpler.
.9736 x 1024 kg. That’s a big number, so let’s write it out in full: 5,973,600,000,000,000,000,000,000 kg. You could also say the Earth’s mass is 5.9 sextillion tonnes and the mass of Mars is 7.08 x 1020 tons or 6.42 X 1020 metric tons
Answer:
x = 0.40 m
Explanation:
- When the displacement is maximum, the particle is momentarily at rest, which means that at this point (assuming no friction present) all the mechanical energy is elastic potential, which can be written as follows:

- Since in absence of friction, total mechanical energy must keep constant, this means that at any time, the sum of the kinetic and potential energy, must be equal to (1), as follows:

- If KEf = U/2f, replacing in (2), we get:

- At any point, the elastic potential energy is given by the following expression:

where k= spring constant (N/m) and x is the displacement from the
equilibrium position.
- Replacing (4) in (3), simplifying and rearranging, we get:

- Finally, solving for x, we get:

This ain’t the place, bud. If you have a QUESTION, then you can post it here.