Answer:
<em><u>The potential area of wind power in the country is about 6074 sq. km with wind power density greater than 300 watt/m2. More than 3,000 MW of electricity could be generated at 5 MW per sq km. The commercially viable wind potential of the country is estimated to be only about 448 MW.</u></em>
This means that we shouldn't imagine electrons as single objects going around the atom. Instead, all we know is the probability of finding an electron at a particular location. What we end up with is something called an electron cloud. An electron cloud is an area of space in which an electron is likely to be found. It's like a 3-D graph showing the probability of finding the electron at each location in space. Quantum mechanics also tells us that a particle has certain numbers (called quantum numbers) that represent its properties. Just like how materials can be hard or soft, shiny or dull, particles have numbers to describe the properties. These include a particle's orbital quantum numbers, magnetic quantum number, and its spin. No two electrons in an atom can have exactly the same quantum numbers. Orbital quantum numbers tell you what energy level the electron is in. In the Bohr model, this represents how high the orbit is above the nucleus; higher orbits have more energy. The first orbit is n=1, the second is n=2, and so on. The magnetic quantum number is just a number that represents which direction the electron is pointing. The other important quantum mechanical property, called spin, is related to the fact that electrons come in pairs. In each pair, one electron spins one way (with a spin of one half), and the other electron spins the other way (with a spin of negative one half). Two electrons with the same spin cannot exist as a pair. This might seem kind of random, but it has effects in terms of how magnetic material is. Materials that have unpaired electrons are more likely to be magnetic
They measured the wavelength of light emitted by stars using spectrometers and found it was being redshifted.
This implied the stars were moving away aka the space between the scientists and the star was expanding
Answer:
x=2.4t+4.9t^2
Explanation:
This equation is one of the kinematic equations to solve for distance. The original equation is as follows:
X=Xo+Vt+1/2at^2
We know that the ball starts at rest meaning that its initial velocity and position is zero.
X=0+Vt+1/2at^2
Since it is going down the ramp, you can use the acceleration of gravity constant. (9.81 m/s^2) and simplify that with the 1/2.
X=Vt+4.9t^2
Note: Since the positive direction in this problem is down, you are adding the 4.9t^2, but if a question says that the downward direction is negative, you would subtract those values.
Now, substitute in your velocity value.
X=2.4t+4.9t^2