Answer:
True
Step-by-step explanation:
First statement
[a b c | d][x]
[a b c]x=d
ax+bx+cx=d
Second statement
Ax=d
Given that A = [a b c]
[a b c]x=d
ax+bx+cx=d
ax+bx+cx=d
Then, they are going to have the same solutions
Given:
Point F,G,H are midpoints of the sides of the triangle CDE.

To find:
The perimeter of the triangle CDE.
Solution:
According to the triangle mid-segment theorem, the length of the mid-segment of a triangle is always half of the base of the triangle.
FG is mid-segment and DE is base. So, by using triangle mid-segment theorem, we get




GH is mid-segment and CE is base. So, by using triangle mid-segment theorem, we get




Now, the perimeter of the triangle CDE is:



Therefore, the perimeter of the triangle CDE is 56 units.
a cause their really isnt any ADEF like in letters
Step-by-step explanation:
1.solution
=2a+5a
=7a
2.solution
=12x-3x
=9x
3.solution
=3p+2p-p
=5p-p
=4p
Hope it helps you.
Answer:
StartFraction 6 Over 5 x Superscript 10 Baseline EndFraction
Step-by-step explanation:
Apparently you want to simplify ...

The applicable rules of exponents are ...
(a^b)(a^c) = a^(b+c)
1/a^b = a^-b
(a^b)^c = a^(bc)
__
So the expression simplifies as ...
