Length = x + 2 (because it is 2 cm more than x)
Width = 2x - 5 (5 cm lest than 2x)Area = 54 cm2 this is the formula to find the area Length × Width = Area (x + 2)(2x - 5) = 542x2 - x - 10 = 54 (this is you area)
Subtract 54 on both sides of equation to make the right side zero. 2x2 - x - 64 = 0 then use the quadratic formula x = (-b ± √(b2 - 4ac)) / 2a where:a = 2b = -1c = -64 Plug in these values into the formula. x = (1 ± √(1 - 4(-128))) / 4 x = (1 ± √(513)) / 4 x = (1 ± 22.65) / 4 x = (1 + 22.65) / 4 and x = (1 - 22.65) / 4 x = 5.91 and x = -5.41 Check the validity of the x values by adding them to the length and width. If the length or width should be a negative value, then that value of x is not acceptable. Now x = 5.91 Length = 5.91 + 2 (positive value.)Width = 2(5.91) - 5 ( positive value.) x = 5.91 If we look at this -- x = -5.41, Both length and width will be negative values. We reject this value of x. The answer is x = 5.91
Hope I helped and sorry it was really long
Answer:
let me see and ill let you know
Step-by-step explanation:
Answer:
78 degrees
Step-by-step explanation:
If you look at it, 2 of the angels are the same- those angels are A and B- the angel we are looking for. Angel A is 78 degrees and if angel A and angel B are equal then angel B is also 78 degrees.
Answer:
B. 1 over 8
Step-by-step explanation:
To determine the probability of the spinner landing on 5, we need to first know what probability is,
probability = required outcome/all possible outcome
since the spinner is divided into 8 equal sections and each section contains number from 1-8, this implies there are total of 64 numbers on the spinner. This implies that all possible outcome = 64
In each section there is 5, since there are 8 sections on the spinner, the number of 5's on the spinner are 8.
This implies that the required outcome = 8
but
probability = required outcome/all possible outcome
probability (of the spinner landing on 5) = 8/64 =1/8
Answer:
3
Step-by-step explanation:
recall that 81 = 3 x 3 x 3 x 3 = 3⁴
given

= ( 3⁴) ^ (1/4)
= 
= 3