Since it is a rectangular prism, the front and back are the same. the sides are the same and the top and bottom are the same. You would find the area of the front and back first. Since they both have the same measurements, you can find the area of one of the faces and multiply by 2.
A=BH
A= 3x5
A=15
15x2=30
So the front and back's area is 30. Now you find the area of both sides. They are both rectangle so the formula is A=BH.
A=BH
A=3x5
A=15
15x2=30
Now you find the area of the top and bottom. It is also a rectangle so you will use the same formula.
A=BH
A=3x3
A=9
9x2=18
Finally, you add all these measurements together adn that is the surface area.
This surface area of this rectangle prism is 78.
Answer:
The answer is below
Step-by-step explanation:
The standard form of the equation of an ellipse with major axis on the y axis is given as:

Where (h, k) is the center of the ellipse, (h, k ± a) is the major axis, (h ± b, k) is the minor axis, (h, k ± c) is the foci and c² = a² - b²
Since the minor axis is at (37,0) and (-37,0), hence k = 0, h = 0 and b = 37
Also, the foci is at (0,5) and (0, -5), therefore c = 5
Using c² = a² - b²:
5² = a² - 37²
a² = 37² + 5² = 1369 + 25
a² = 1394
Therefore the equation of the ellipse is:

2 1/2 more pounds of carrots.
The complete question in the attached figure
we know that
length side AB=8 units
length side DE=4 units
[ABC]=[DEF]*[scale factor]
then
[scale factor ]=[ABC]/[DEF]---------> 8/4--------> 2
the answer is
the scale factor for a dilation image of DEF to obtain ABC is 2
The valid conclusions for the manager based on the considered test is given by: Option
<h3>When do we perform one sample z-test?</h3>
One sample z-test is performed if the sample size is large enough (n > 30) and we want to know if the sample comes from the specific population.
For this case, we're specified that:
- Population mean =
= $150 - Population standard deviation =
= $30.20 - Sample mean =
= $160 - Sample size = n = 40 > 30
- Level of significance =
= 2.5% = 0.025 - We want to determine if the average customer spends more in his store than the national average.
Forming hypotheses:
- Null Hypothesis: Nullifies what we're trying to determine. Assumes that the average customer doesn't spend more in the store than the national average. Symbolically, we get:

- Alternate hypothesis: Assumes that customer spends more in his store than the national average. Symbolically

where
is the hypothesized population mean of the money his customer spends in his store.
The z-test statistic we get is:

The test is single tailed, (right tailed).
The critical value of z at level of significance 0.025 is 1.96
Since we've got 2.904 > 1.96, so we reject the null hypothesis.
(as for right tailed test, we reject null hypothesis if the test statistic is > critical value).
Thus, we accept the alternate hypothesis that customer spends more in his store than the national average.
Learn more about one-sample z-test here:
brainly.com/question/21477856