All circles are similar because all circle have same shape.
However Two circles are congruent , if and only if their radii are congruent.
In our question we are asked when are all circles similar given if their radii are congruent.
So we can say this statement is false because no matter the radii are congruent or not , two or more circles are always similar because of their same shape no matter what the measure of their radii is. Only if we are asked when they are congruent, we will consider the radii part.
Answer is false.
The answer here is C. The sign of the factors are both positive. We can use the FOIL method as reference in determining the sign of the factors. The 3rd term C is positive; therefore our only option is either both negative or both positive. Looking the middle term, which is positive, we know that the middle term is the sum of the outer and inner in FOIL method, which means, signs of the factors must be both positive
Answer:
A) Divide 20 by 2 and then add 8 to the result
Step-by-step explanation:

36 cm^2
Step-by-step explanation:
<u>Small</u><u> </u><u>window</u>
Length: 2cm
Width: 2cm
<u>Area</u><u>:</u> 4 cm^2
<u>Big window</u>
Length: 4cm
Width: 3cm
<u>Area</u><u>:</u> 12 cm^2
Total area of the windows:
(Area of 4 small windows + area of 1 big window)
(4 cm^2 x 4 + 12cm^2)
= <u>28 cm^2</u>
<u>Above</u><u> </u><u>window</u><u> </u><u>(</u><u>approx</u><u>.</u><u>)</u>
<u>Rectangle</u>
Length: 3cm
Width: 2cm
<u>Area</u><u>:</u> 6 cm^2
<u>T</u><u>riangle</u>
Base: 1cm
Height: 1cm
<u>Area</u><u>:</u> 2 x 0.5 cm^2 = 1 cm^2
<u>Square</u><u> </u><u>(</u><u>between</u><u> </u><u>the</u><u> </u><u>triangles</u><u>)</u>
Length: 1cm
Width: 1cm
<u>Area</u><u>:</u> 1 cm^2
= 8 cm^2
<u>TOTAL</u><u> </u><u>AREA</u><u> </u><u>OF</u><u> </u><u>ALL</u><u> </u><u>WINDOWS</u>
= AREA OF 4 WINDOWS + AREA OF BIG WINDOW + AREA OF ABOVE WINDOW
= 16 cm^2 + 12 cm^2 + 8 cm^2
<h3>
= <u>
36 cm^2</u></h3>
<em>I</em><em> </em><em>hope</em><em> </em><em>I</em><em> </em><em>made</em><em> </em><em>the</em><em> </em><em>explanations</em><em> </em><em>clear</em><em> </em><em>enough</em><em> </em><em>to</em><em> </em><em>make</em><em> </em><em>it</em><em> </em><em>easier</em><em> </em><em>for</em><em> </em><em>you</em><em> </em><em>to</em><em> </em><em>understand</em><em>!</em>