Answer:
a.
R-------8/38--------RR
R------9/39--------B-------13/38-------RB
G------17/38--------RG
R-------9/38--------BR
B--------13/39------B-------12/38-------BB
G-------17/38-------BG
R-----9/38--------GR
G---------17/39-------B------13/38-------GB
G------16/38-------GG
b).
- 9 ways
- ways you can select 1 blue are; RB,BR,BG,GB
RB=9/39 × 13/38=3/38
BR= 13/39 × 9/38 =3/38
BG= 13/39 × 17/38=17/114
GB= 17/39 × 13/38=17/114
=3/38 +3/38+17/114+ 17/114 =26/57
- Probability of selecting 2 red markers= RR = 9/39 × 8/38 =12/247
- Probability of selecting a green marker and then a red marker= GR= 17/39×9/38 =51/494
Answer:

Step-by-step explanation:
Given


Required
Determine AC
Since A, B and C are collinear, then:

So, we have:

Point A, point C, point B, and point E
Answer:
1/25 ; 3/20 ; 3/50
Step-by-step explanation:
Total number of stickers :
(10 + 15 + 25) = 50 stickers
Probability = required outcome / Total possible outcomes
a. Selecting blue and blue stickers
P(First blue) = 10/50 = 1/5
P(second blue) = 10/50 = 1/5
1/5 * 1/5 = 1 / 25
b. Selecting one red sticker and then one orange sticker
P(First red) = 15/50 = 3/10
P(second orange) = 25/50 = 1/2
3/10 * 1/2 = 3 /20
Selecting one red sticker and then one blue sticker
P(First red) = 15/50 = 3/10
P(second blue) = 10/50 = 1/5
3/10 * 1/5 = 3 / 50
Answer:
sin A = 12/13
Step-by-step explanation:
Since this is a right triangle, we can use trig functions
sin theta = opposite side/ hypotenuse
sin A = 12/13