Answer:
We can solve this by the method of which i solved your one question earlier
so again here molar mass of C12H25NaSO4 is 288.372 and number of moles for 11900 gm of C12H25NaSO4 will be = 11900/288.372
which is almost = 41.26 moles
so to get one mole of C12H25NaSO4 we need one mole of C12H26O
so for 41.26 moles of C12H25NaSO4 it will require 41 26 moles of C12H26O
so the mass of C12H26O = 41.26× its molar mass
C12H26O = 41.26×186.34
= 7688.38 gm!!
so the conclusion is If you need 11900 g of C12H25NaSO4 (Sodium Lauryl Sulfate) you need C12H26O 7688.38 gm !!
Again i d k wether it's right or wrong but i tried my best hope it helped you!!
Answer:
It would be an isotope.
Background Information:
Isotopes are typically elements that have a different number of protons than neutrons. The atomic mass is the total number of protons and neutrons. The atomic number is the number of protons.
Explanation:
If the atomic number is the number of protons that means that this particular element has 8 protons. If the atomic mass is the total number of protons and neutrons then we can simply take away the amount of protons from that number, 18 - 8 = 10. If we take protons away from the number of protons and neutrons we are left with the number of neutrons. So there are 10 neutrons. Because there are 8 protons and 10 neutrons, or a different amount of neutrons and protons we know that this particular atom is an isotope.
Answer:
- Break down a problem into smaller units or sub-problems.
- Reverse engineering, or taking something apart so as to evaluate and provide solutions.
Explanation:
For the first one, if you are a computer engineer for example, it is hard to troubleshoot a whole program but if you write small stand alone sections, you can easily troubleshoot the smaller section.
Answer : 37 drops are delivered per milliliter of the solution.
Explanation :
The problem gives us lot of extra information.
We want to find the number of drops delivered in 1 milliliter here.
We have been given that, one drop of the solution delivers 0.027 mL of solution.
Let us use this as a conversion factor, 
Let us find number of drops in 1 mL using this conversion factor.

Therefore we can say that 37 drops are delivered per milliliter of the solution.
Answer:
C
Explanation:
That is because the monomer is a complete unit that repeats itself.