HNO₃(aq) + NaOH(aq) → NaNO₃(aq) + H₂O(l)
H⁺ + NO₃⁻ + Na⁺ + OH⁻ → Na⁺ + NO₃⁻ + H₂O
H⁺ + OH⁻ → H₂O (the net ionic equation)
Answer:
specific heat.
Explanation:
Definition:
The amount of heat required to raise the temperature of one gram of substance by one degree is called specific heat.
Formula:
Q = m. c. ΔT
Q = amount of heat required
m = mass of substance
c = specific heat of substance
ΔT = change in temperature
The substance with greater value of specific heat require more heat to raise the temperature while the substance with lower value will raise its temperature very quickly by absorbing smaller heat.
For example the beach sand gets hot very quickly because of lower specific heat of sand while water is colder than sand because of higher specific heat capacity.
The energy release when dissolving 1 mol of NaOH in water is 445.1 kJ
the mass of NaOH to be dissolved is 32.0 g
The number of NaOH moles in 32.0 g - 32.0 g / 40 g/mol = 0.8 mol
the energy released whilst dissolving 1 mol of NaOH - 445.1 kJ
when dissolving 0.8 mol - the energy released is 445.1 kJ/mol x 0.8 mol
therefore heat released is - 356.08 kJ
answer is -356.08 kJ
Answer:
The three blanks for this answer, are
1. volumen
2. moles
3. Temperature and pressure.
So, Avogadro's law states that the volume of a gas is directly proportional to the moles of the gas when temperature and pressure stay the same
Explanation:
Imagine you have 10 moles of a gas which is contained in 50 L. How many moles of that gas, you will have if the volumen has been reduced to 10 L. (Of course, don't forget that T° and pressure are the same)
There is an equation like this, initial moles /initial volume = moles at the end/volume at the end, (Avogadro law for gases), so 10/50 =moles at the end/10. When u operate, moles at the end = (10 x 10) / 50.
Moles at the end are 2. Did u get it?. Volumen has been reduced, also the moles.
Answer:
I think the answer is C but you might need a second opinion on this answer