Explanation:
the volume and temperature of a gas have a ditect relationship,as the temperature increases the volume also increases when pressure is held constand, heating the gas increases the kinetic energy of the particles or atoms,causing the gas to expand until the pressure returns to its original value
Answer:
full moon
Explanation:
....ur welcome..............
Answer : The equilibrium concentration of
in the solution is, 
Explanation :
The dissociation of acid reaction is:

Initial conc. c 0 0
At eqm. c-x x x
Given:
c = 

The expression of dissociation constant of acid is:
![K_a=\frac{[H_3O^+][C_6H_5COO^-]}{[C_6H_5COOH]}](https://tex.z-dn.net/?f=K_a%3D%5Cfrac%7B%5BH_3O%5E%2B%5D%5BC_6H_5COO%5E-%5D%7D%7B%5BC_6H_5COOH%5D%7D)

Now put all the given values in this expression, we get:
![6.3\times 10^{-5}=\frac{(x)\times (x)}{[(7.0\times 10^{-2})-x]}](https://tex.z-dn.net/?f=6.3%5Ctimes%2010%5E%7B-5%7D%3D%5Cfrac%7B%28x%29%5Ctimes%20%28x%29%7D%7B%5B%287.0%5Ctimes%2010%5E%7B-2%7D%29-x%5D%7D)

Thus, the equilibrium concentration of
in the solution is, 
Answer:
1.73 atm
Explanation:
Given data:
Initial volume of helium = 5.00 L
Final volume of helium = 12.0 L
Final pressure = 0.720 atm
Initial pressure = ?
Solution:
"The volume of given amount of gas is inversely proportional to its pressure by keeping the temperature and number of moles constant"
Mathematical expression:
P₁V₁ = P₂V₂
P₁ = Initial pressure
V₁ = initial volume
P₂ = final pressure
V₂ = final volume
Now we will put the values in formula,
P₁V₁ = P₂V₂
P₁ × 5.00 L = 0.720 atm × 12.0 L
P₁ = 8.64 atm. L/5 L
P₁ = 1.73 atm
The answer is B) the solutions vapor pressure will be lower.