One revolution is completed when a fixed point on the wheel travels a distance equal to the circumference of the wheel, which is 2π (13 cm) = 26π cm.
So we have
1 rev = 26π cm
1 rev = 2π rad
1 min = 60 s
(a) The angular velocity of the wheel is
(35 rev/min) * (2π rad/rev) * (1/60 min/s) = 7π/6 rad/s
or approximately 3.665 rad/s.
(b) The linear velocity is
(35 rev/min) * (26π cm/rev) * (1/60 min/s) = 91π/6 cm/s
or roughly 47.648 cm/s.
Answer:
16, 8, 23
Step-by-step explanation:
2x+x+x+15=47
4x+15=47
4x=32
x=8
2x=16
x+15=23
Answer:
6. Multiply 2 by 6
7. 71 + 9(8) = 71 + 72 = 143
8. 52 + 3(4) = 12 + 52 = 64
9. 19.25 + 2.75(7) = 19.25 + 19.25 = 38.50
10. 2(0.6)^2 + 4(0.6)(5) = 0.72 + 12 = 12.72
Srry if they r wrong
Answer:
3 * 3 * 3 * 3
=> 
If my answer helped, then kindly mark me as the brainliest!!
Thank You!!
Answer:
Let the vectors be
a = [0, 1, 2] and
b = [1, -2, 3]
( 1 ) The cross product of a and b (a x b) is the vector that is perpendicular (orthogonal) to a and b.
Let the cross product be another vector c.
To find the cross product (c) of a and b, we have
![\left[\begin{array}{ccc}i&j&k\\0&1&2\\1&-2&3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5C0%261%262%5C%5C1%26-2%263%5Cend%7Barray%7D%5Cright%5D)
c = i(3 + 4) - j(0 - 2) + k(0 - 1)
c = 7i + 2j - k
c = [7, 2, -1]
( 2 ) Convert the orthogonal vector (c) to a unit vector using the formula:
c / | c |
Where | c | = √ (7)² + (2)² + (-1)² = 3√6
Therefore, the unit vector is
or
[
,
,
]
The other unit vector which is also orthogonal to a and b is calculated by multiplying the first unit vector by -1. The result is as follows:
[
,
,
]
In conclusion, the two unit vectors are;
[
,
,
]
and
[
,
,
]
<em>Hope this helps!</em>