Answer: 200 minutes have to be used for the costs of both plans to be the same.
Step-by-step explanation:
Let x represent the number of minutes that have to be used for the costs of both plans to be the same.
Package A is $35.00 per month with an additional charge of $0.15 per minute for long distance. This means that the cost of using package A for x minutes in a month would be
35 + 0.15x
Package B is $45.00 per month with an additional charge of $0.10 per minute for long distance. This means that the cost of using package A for x minutes in a month would be
45 + 0.1x
For both costs to be the same, it means that
35 + 0.15x = 45 + 0.1x
0.15x - 0.1x = 45 - 35
0.05x = 10
x = 10/0.05
x = 200
Answer:
b<-7
Step-by-step explanation:
3b+3<-18
subtract 3 on both sides
3b<-21
divide 3 on both sides
b<-7
19.83 x 1.07 = <span>21.218
$21.22</span>
Answer:
t=5/3
Step-by-step explanation:
in order to get our answer, we have to first open it up which comes to 3t-6=-1
next,we have to isolate the variable, so we add (6) to (-1)
then we get 3t=5
so, t=5/3
Answer:
The solution is obtained by adding the two equations.
The solution is: (x, y) = (
,
)
Step-by-step explanation:
We are given two equations with two variables. The strategy is to eliminate one variable and solve for both the variables.
The two equations are:


Adding both the equations, we get:



Substituting the value of 'x', we get the value of y.
We substitute in (2). [Can be substituted in any equation].
We get: y = 2x - 1



So, we get the corresponding values of x and y which is the solution of the two equations.