Answer:
Yes
Step-by-step explanation:
The following relation is a function. When graphed, it passes the vertical line test, and you don't go across any two points at the same time. So therefore, it is a function. Another easy way to determine if the relation is a function is by taking a look at the x-coordinates. If any x-coordinates are the same, then it's not a function. If all x-coordinates are the same, then it's a function.
Hope this helps. Please mark brainliest.
<h2>Steps:</h2><h3>A.</h3>
For this, plug 4 into the x variable (since 4 is in the x variable of g(x)) and solve as such:

<u>Your final answer is g(4) = 7.</u>
<h3>B.</h3>
For this, it's a similar process as A, but you are plugging -10 into the x variable and solving:

<u>Your final answer is g(-10) = 0</u>
<h3>C.</h3>
Similar process as before, but you are plugging 0 for x to solve:

<u>Your final answer is g(0) = 5.</u>
Answer:
always
Step-by-step explanation:
this product can also be written as a^2 - ab - ab + b^2
which is a^2 - 2(ab) + b^2
a perfect square trinomials equation is
a^2 + 2(ab) + b^2
and this qualifies