Answer:
(6 - 5x(2))(x(4) - x(3))
(6 - 5x^2) (x^4 - x^3)
6x^4 - 6x^3 - 5x^6 + 5x^5
-5x^6 + 5x^5 + 6x^4 - 6x^3
Step-by-step explanation:
Answer:
The approximate percentage of SAT scores that are less than 865 is 16%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 1060, standard deviation of 195.
Empirical Rule to estimate the approximate percentage of SAT scores that are less than 865.
865 = 1060 - 195
So 865 is one standard deviation below the mean.
Approximately 68% of the measures are within 1 standard deviation of the mean, so approximately 100 - 68 = 32% are more than 1 standard deviation from the mean. The normal distribution is symmetric, which means that approximately 32/2 = 16% are more than 1 standard deviation below the mean and approximately 16% are more than 1 standard deviation above the mean. So
The approximate percentage of SAT scores that are less than 865 is 16%.
Answer:
10 / 12
simplified:
5/6
since 5 is a prime number, we can't simplify this ratio any further
Answer:
The 95% confidence interval for the percent of all black adults who would welcome a white person into their families is (0.8222, 0.8978).
Step-by-step explanation:
In a sample with a number n of people surveyed with a probability of a success of
, and a confidence level of
, we have the following confidence interval of proportions.

In which
z is the zscore that has a pvalue of
.
For this problem, we have that:
323 blacks, 86% of blacks said that they would welcome a white person into their families. This means that 
95% confidence level
So
, z is the value of Z that has a pvalue of
, so
.
The lower limit of this interval is:

The upper limit of this interval is:

The 95% confidence interval for the percent of all black adults who would welcome a white person into their families is (0.8222, 0.8978).