Answer: The new pressure of the gas, assuming that no gas escaped during the experiment is 0.470 atm
Explanation:
Combined gas law is the combination of Boyle's law, Charles's law and Gay-Lussac's law.
The combined gas equation is,

where,
= initial pressure of gas = 0.732 atm
= final pressure of gas = ?
= initial volume of gas = 6.87 L
= final volume of gas = 9.22 L
= initial temperature of gas = 
= final temperature of gas = 
Now put all the given values in the above equation, we get:


Thus the new pressure of the gas, assuming that no gas escaped during the experiment is 0.470 atm
Answer: See below
Explanation:
1. To calculate the mass, you know you can convert by using molar mass. Since mass is in grams, we can use molar mass to convert moles to grams. This calls for the Ideal Gas Law.
Ideal Gas Law: PV=nRT
We manipulate the equation so that we are solving for moles, then convert moles to grams.
n=PV/RT
P= 100 kPa
V= 0.831 L
R= 8.31 kPa*L/mol*K
T= 27°C+273= 300 K
Now that we have our values listed, we can plug in to find moles.


We use the molar mass of NO₂ to find grams.

The mass is 1.52 g.
2. To calculate the temperature, we need to use the Ideal Gas Law.
Ideal Gas Law: PV=nRT
We can manipulate the equation so that we are solving for temperature.
T=PV/nR
P= 700.0 kPa
V= 33.2 L
R= 8.31 kPa*L/mol*K
n= 70 mol
Now that we have our values, we can plug in and solve for temperature.


The temperature is 40 K.
Which device is designed to produce mechanical energy?
Well, mechanical energy is the sum of potential and kinetic energy. Kinetic energy is a unit of energy in which is the reason why an object does movement, while potential energy is another unit of energy in which is the reason why an object doesn't move, or stops. While you can stop a fan or a lamp, it isn't automatic. It's manually. So the answer is (4) an oven because mechanical energy happens automatically, not manually, or for a greater reason.
Basically it means carbon dioxide is removed from the atmosphere and is trapped in e.g. calcium carbonate (like shells), rocks, oceans etc.