Answer:
The answer is D. 0.60 L
Explanation:
The balanced reaction equation including states of matter is;
H₂SO₄(aq) + 2NaOH(aq) → Na₂SO₄(aq) + 2H₂O(l)
More simple:
H2SO4 + 2NaOH → Na2SO4 + 2H2O
Now, we can see from this reaction equation that the mole ratio of NaOH to H2SO4 is 2:1
Number of moles of H2SO4 reacted = 1.2 moles
Hence;
2 moles of NaOH reacts with 1 mole of H2SO4
x moles of NaOH reacts with 1.2 moles of H2SO4
x = 2 * 1.2/1 = 2.4 moles of NaOH
Recall that;
Number of moles = Concentration * Volume
Volume = number of moles/concentration
Volume of NaOH is obtained from;
Volume = 2.4 moles/ 4.0 M
Volume = 0.60 L
Answer:
3626.76dm³
Explanation:
Given parameters:
Number of moles of Nitrogen in tank = 17moles
Temperature of the gas = 34°C
Pressure on the gas = 12000Pa
Unkown:
Volume of the tank, V =?
Converting the parameters to workable units:
We take the temperature from °C to Kelvin
K = 273 + °C = 273 + 34 = 307k
Taking the pressure in Pa to atm:
101325Pa = 1atm
12000Pa = 0.118atm
Solution:
To solve this problem, we employ the use of the ideal gas equation. The ideal gas law combines three gas laws which are the Boyle's law, Charles's law and the Avogadro's law.
It is expressed as PV = nRT
The unknown is the Volume and we make it the subject of the formula
V = 
Where R is called the gas constant and it is given as 0.082atmdm³mol⁻¹K⁻¹
Therefore V =
= 3626.76dm³
There’s no pic for me to awnser your question
The answer is A. the attraction between atoms that enables the formation of chemical compounds.
The full question asks to decide whether the gas was a specific gas. That part is missing in your question. You need to decide whether the gas in the flask is pure helium.
To decide it you can find the molar mass of the gas in the flask, using the ideal gas equation pV = nRT, and then compare with the molar mass of the He.
From pV = nRT you can find n, after that using the mass of gass in the flask you use MM = mass/moles.
1) From pV = nRT, n = pV / RT
Data:
V = 118 ml = 0.118 liter
R = 0.082 atm*liter/mol*K
p = 768 torr * 1 atm / 760 torr = 1.0105 atm
T = 35 + 273.15 = 308.15 K
n = 1.015 atm * 0.118 liter / [ 0.082 atm*liter/K*mol * 308.15K] =0.00472 mol
mass of gas = mass of the fask with the gas - mass of the flasl evacuated = 97.171 g - 97.129 g = 0.042
=> MM = mass/n = 0.042 / 0.00472 = 8.90 g/mol
Now from a periodic table or a table you get that the molar mass of He is 4g/mol
So the numbers say that this gas is not pure helium , because its molar mass is more than double of the molar mass of helium gas.