<span>the table say that at 20 degree celcius 88.0g of NANO3 will remain dissolved in
100 gm of H2O
so at 20 degree celcius 80.0g of H20 will dissolve
(88.0g)x(80g/100g)=70.4g of NANO3
so at 20 degree celcius
86.3g-70.4g= 15.9 gram of NANO3 will come out of solution.</span>
Answer:
the pressure in the pipe in the case when there is no net force on the car is 81,726 N/m^2
Explanation:
a. The computation of the pressure in the pipe in the case when there is no net force on the car is shown below
As we know that
Pressure = F ÷ area
Also
F = mg
Now
= (1500 × 9.8) ÷π (0.24)^2
= 81,726 N/m^2
Hence, the pressure in the pipe in the case when there is no net force on the car is 81,726 N/m^2
The _____melting point________ is the temperature at which a substance changes from solid to liquid; _______boiling point_________ is the temperature at which a substance changes from a liquid to as gas; _______vapourisation_________ is the process by which atoms of molecules leave a liquid and become a gas.
Answer: my answer I’d D! I’m sorry if this did not help you
Explanation: =)
Answer:
0.665 moles of CO₂
Explanation:
The balance chemical equation for the combustion of Ethane is as follow:
2 C₂H₆ + 7 O₂ → 4 CO₂ + 6 H₂O
Step 1: <u>Calculate moles of C₂H₆ as;</u>
Moles = Mass / M.Mass
Putting values,
Moles = 10.0 g / 30.07 g/mol
Moles = 0.3325 moles
Step 2: <u>Calculate Moles of CO₂ as;</u>
According to balance chemical equation,
2 moles of C₂H₆ produced = 4 moles of CO₂
So,
0.3325 moles of C₂H₆ will produce = X moles of CO₂
Solving for X,
X = 0.3325 mol × 4 mol ÷ 2 mol
X = 0.665 moles of CO₂