Answer: 9.5
Step-by-step explanation: took one for the team
Answer:
a_n = 2^(n - 1) 3^(3 - n)
Step-by-step explanation:
9,6,4,8/3,…
a1 = 3^2
a2 = 3 * 2
a3 = 2^2
As we can see, the 3 ^x is decreasing and the 2^ y is increasing
We need to play with the exponent in terms of n
Lets look at the exponent for the base of 2
a1 = 3^2 2^0
a2 = 3^1 2^1
a3 = 3^ 0 2^2
an = 3^ 2^(n-1)
I picked n-1 because that is where it starts 0
n = 1 (1-1) =0
n=2 (2-1) =1
n=3 (3-1) =2
Now we need to figure out the exponent for the 3 base
I will pick (3-n)
n =1 (3-1) =2
n =2 (3-2) =1
n=3 (3-3) =0
Answer:
see explanation
Step-by-step explanation:
Given the 2 equations
5x + y = 21 → (1)
x - 3y = 9 → (2)
Multiply (1) by 3 and add the result to (2) to eliminate y term
15x + 3y = 63 → (3)
Add (2) and (3) term by term
(x + 15x) + )- 3y + 3y) = (9 + 63)
16x = 72 ( divide both sides by 16 )
x = 4.5
Substitute x = 4.5 into (1) for corresponding value of y
22.5 + y = 21 ( subtract 22.5 from both sides )
y = - 1.5
Solution is (4.5, - 1.5 )
You can use the regrouping
Tangent 45 = height / 3
height = 3 * tan (45)
height = 3 * 1
height = 3
<span>Trapezoid area = ((sum of the bases) ÷ 2) • height
</span>
<span>Trapezoid area = (9 + 15) /2 * height
</span><span>Trapezoid area = 12 * 3
</span><span>Trapezoid area = 36
</span>