The work become much simpler if you do it in a table. Hope this helps!!
The Original Price is $40
Explanation:
50 1 20
—- = — Which means ——
100 2 40
Answer:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.
Step-by-step explanation:
Dados dos ángulos vecinos, ambos son complementarios si la suma de sus medidas es igual a 90° y suplementarios si esa suma de medidas es igual a 180°. Puesto que uno de los ángulos es el ángulo agudo mencionado en el enunciado, es decir, un ángulo cuya medida es mayor que 0° y menor que 90°. Entonces, el ángulo complementario debe ser inevitablemente menor que el ángulo suplementario.
Answer:
STEP 3
Step-by-step explanation:
Francesca drew point (–2, –10) on the terminal ray of angle , which is in standard position. She found values for the six trigonometric functions using the steps below.
A unit circle is shown. A ray intersects point (negative 2, negative 10) in quadrant 3. Theta is the angle formed by the ray and the x-axis in quadrant 1.
Francesca made her first error in step 3 because the sine, cosine, and tangent ratios are incorrect, which also resulted in incorrect cosecant, secant, and tangent functions.
please mark me brainlyest <i cant spell it >
9514 1404 393
Answer:
y = 1/3x +6
Step-by-step explanation:
The slope of the given line is the coefficient of x, -3. The slope of the perpendicular line will be the opposite reciprocal of that:
-1/(-3) = 1/3
The point-slope equation is then ...
y -k = m(x -h) . . . . . for line of slope m through point (h, k)
Here, we have m = 1/3, (h, k) = (-3, 5), so the point-slope equation is ...
y -5 = 1/3(x +3)
y = 1/3x + 1 + 5 . . . . eliminate parentheses, add 5
y = 1/3x +6 . . . . slope-intercept equation of the line