Answer:
5 terms
to the fourth degree
leading coeff of 1
3 turning points
end behavior (when x -> inf, y -> inf. When x -> - inf, y -> -inf)
x intercepts are (0,-4) (0,-2) (0,1) (0,3)
Relative min: (-3.193, -25) (2.193, 25)
Relative max: (-0.5, 27.563)
Step-by-step explanation:
The terms can be counted, seperated by the + and - in the equation given.
The highest exponent is your degree.
The number before the highest term is your leading coeff, if there is no number it is 1.
The turning points are where the graph goes from falling to increasing or vice versa.
End behaviour you have to look at what why does when x goes to -inf and inf.
X int are the points at which the graph crosses the x-axis.
The relative min and max are findable if you plug in the graph on desmos or a graphing calculator.
Y=2(4)+8
y=8+8
y=16
Hope this helps :)
You would do 5 times 4 which is 20. then count how many zero's there are and put them after the 20.
Answer:
a) Var[z] = 1600
D[z] = 40
b) Var[z] = 2304
D[z] = 48
c) Var[z] = 80
D[z] = 8.94
d) Var[z] = 80
D[z] = 8.94
e) Var[z] = 320
D[z] = 17.88
Step-by-step explanation:
In general
V([x+y] = V[x] + V[y] +2Cov[xy]
how in this problem Cov[XY] = 0, then
V[x+y] = V[x] + V[y]
Also we must use this properti of the variance
V[ax+b] = V[x]
and remember that
standard desviation =
a) z = 35-10x
Var[z] = Var[x] = 100*16 = 1600
D[z] = = 40
b) z = 12x -5
Var[z] = Var[x] = 144*16 = 2304
D[z] = = 48
c) z = x + y
Var[z] = Var[x+y] = Var[x] + Var[y] = 16 + 64 = 80
D[z] = = 8.94
d) z = x - y
Var[z] = Var[x-y] = Var[x] + Var[y] = 16 + 64 = 80
D[z] = = 8.94
e) z = -2x + 2y
Var[z] = 4Var[x] + 4Var[y] = 4*16 + 4*64 = 320
D[z] = = 17.88