1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PtichkaEL [24]
3 years ago
11

A transverse wave on a string is described by the following wave function.y = (0.090 m) sin (px/11 + 4pt)(a) Determine the trans

verse speed and acceleration of an element of the string at t = 0.160 s for the point on the string located at x = 1.40 m.Your response differs from the correct answer by more than 10%. Double check your calculations. m/sm/s2(b) What are the wavelength, period, and speed of propagation of this wave?msm/s
Physics
1 answer:
alukav5142 [94]3 years ago
7 0

Explanation:

(a) It is known that equation for transverse wave is given as follows.

                 y = (0.09 m)sin(\pi \frac{x}{11} + 4 \pi t)

Now, we will compare above equation with the standard form of transeverse wave equation,

                 y = A sin(kx + \omega t)

where,    A is the amplitude = 0.09 m

              k is the wave vector = \frac{\pi}{11}

              \omega is the angular frequency = 4\pi

              x is displacement = 1.40 m

              t is the time = 0.16 s

Now, we will differentiate the equation with respect to t as follows.

The speed of the wave  will be:

                   v(t) = \frac{dy}{dt}

                v(t) = A \omega cos(kx + \omega t)

        v(t) = (0.09 m)(4\pi) cos(\frac{\pi \times 1.4}{11} + 4 \pi \times 0.16)

          v(t) = -0.84 m/s

The acceleration of the particle in the location is

            a(t) = \frac{dv}{dt}

           a(t) = -A \omega 2sin(kx + \omega t)

           a(t) = -(0.09 m)(4 \pi)2 sin(\frac{\pi \times 1.4}{11} + 4\pi \times 0.16)

           a(t) = -9.49 m/s^{2}

Hence, the value of transverse wave is 0.84 m/s and the value of acceleration is 9.49 m/s^{2} .

(b)  Wavelength of the wave is given as follows.

               \lambda = \frac{2\pi}{k}

              \lambda = (frac{2\pi}{\frac{\pi}{11})


              \lambda = 22 m

The period of the wave is

             T = \frac{2 \pi}{\omega}

             T = \frac{2 \pi}{4 \pi}

                = 0.5 sec

Now, we will calculate the speed of propagation of wave as follows.

                    v = \frac{\lambda}{T}

                       = \frac{22 m}{0.5 s}

                       = 44 m/s

therefore, we can conclude that wavelength is 22 m, period is 0.5 sec, and speed of propagation of wave is 44 m/s.

You might be interested in
Which statement about electrons and atomic orbitals is not true?
Lubov Fominskaja [6]

An electron cloud represents all the orbitals in an atom.

5 0
3 years ago
Read 2 more answers
A radioactive material has a count rate of 400 per minute. It has a half life of 40 years. How long will it take to decay to a r
cestrela7 [59]

Answer:

160 years.

Explanation:

From the question given above, the following data were obtained:

Initial count rate (Cᵢ) = 400 count/min

Half-life (t½) = 40 years

Final count rate (Cբ) = 25 count/min

Time (t) =?

Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:

Initial count rate (Cᵢ) = 400 count/min

Final count rate (Cբ) = 25 count/min

Number of half-lives (n) =?

Cբ = 1/2ⁿ × Cᵢ

25 = 1/2ⁿ × 400

Cross multiply

25 × 2ⁿ = 400

Divide both side by 25

2ⁿ = 400/25

2ⁿ = 16

Express 16 in index form with 2 as the base

2ⁿ = 2⁴

n = 4

Thus, 4 half-lives has elapsed.

Finally, we shall determine the time taken for the radioactive material to decay to the rate of 25 counts per minute. This can be obtained as follow:

Half-life (t½) = 40 years

Number of half-lives (n) = 4

Time (t) =?

n = t / t½

4 = t / 40

Cross multiply

t = 4 × 40

t = 160 years.

Thus, it will take 160 years for the radioactive material to decay to the rate of 25 counts per minute.

7 0
2 years ago
When is a hypothesis developed in the scientific method?
ivanzaharov [21]

Answer:

aren't there pics ?

Explanation:

7 0
3 years ago
Read 2 more answers
Can any kind soul help me please​
Alex

Answer:

I) 420000J

ii)

Explanation:

(I) so you can use the formula for quantity of heat then substitute the values given

formula-Q=mc∆9

3 0
3 years ago
If one of two interacting charges is doubled, the force between the charges will _____________.
malfutka [58]

If one of two interacting charges is doubled, the force between the charges will double.

Explanation:

The force between two charges is given by Coulomb's law

F=\frac{k q1 q2}{r^{2}}

K=constant= 9 x 10⁹ N m²/C²

q1= charge on first particle

q2= charge on second particle

r= distance between the two charges

Now if the first charge is doubled,

we get F'=\frac{k (2q1) q2}{r^{2}}

F'= 2 F

Thus the force gets doubled.

4 0
3 years ago
Other questions:
  • What three forms of kinetic energy can a polyatomic molecule have?
    10·1 answer
  • Which electromagnetic waves have the highest energy?
    8·1 answer
  • How Is budding different from fertilization
    5·1 answer
  • 5. Lady Gaga needed someone to buy more meat for her meat dress. The famous
    12·1 answer
  • A 2.36 kg block resting on a frictionless surface is attached to an ideal spring with spring constant k = 260 Nm . A force is ap
    15·1 answer
  • Please help with number 2
    15·1 answer
  • This rock known as balanced rock sits on a thin spike of rock in a canyon in Idaho. Explain the that keep the rock balanced on i
    11·2 answers
  • An Olympic track runner starts from rest and has an acceleration of 2.4 m/s2 for 3.6 s, then has zero acceleration for the remai
    6·1 answer
  • When applied behavior analysis is used properly what happens???​
    11·1 answer
  • State pascal is law.<br>please answer me​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!