1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ilya [14]
3 years ago
15

Please help with number 2

Physics
1 answer:
Norma-Jean [14]3 years ago
5 0

Number 2 is Classify

Hope this helps!

You might be interested in
Two technicians are discussing a problem where the brake pedal travels too far before the vehicle starts to slow. Technician A s
iVinArrow [24]

Answer:

Technician A

Explanation:

If Technician B was correct, and the master cylinder is defective - then no braking action would occur.

This is not true however, as some breaking action eventually occurs, meaning it must be out of adjustment.

3 0
4 years ago
A robot probe drops a camera off the rim of a 278 m high cliff on Mars, where the free-fall acceleration is 3.7 m/s2 . Find the
FromTheMoon [43]
S = u + at u = 0 278 = 3.7t t = 278/3.7 = 75.135.. v = ut + 0.5at^2 u = 0 v = 0.5 * 3.7 * 75.135^2 = 10,443 m/sec
4 0
3 years ago
An experimental rocket designed to land upright falls freely from a height of 2.59 102 m, starting at rest. At a height of 86.9
aleksandr82 [10.1K]

Answer:

The acceleration required by the rocket in order to have a zero speed on touchdown is 19.96m/s²

The rocket's motion for analysis sake is divided into two phases.

Phase 1: the free fall motion of the rocket from the height 2.59*102m to a height 86.9m

Phase 2: the motion of the rocket due to the acceleration of the rocket also from the height 86.9m to the point of touchdown y = 0m.

Explanation:

The initial velocity of the rocket is 0m/s when it started falling from rest under free fall. g = 9.8m/s² t1 is the time taken for phase 1 and t2 is the time taken for phase2.

The final velocity under free fall becomes the initial velocity for the accelerated motion of the rocket in phase 2 and the final velocity or speed in phase 2 is equal to zero.

The detailed step by step solution to the problems can be found in the attachment below.

Thank you and I hope this solution is helpful to you. Good luck.

5 0
3 years ago
Determine a formula for the magnitude of the force F exerted on the large block (Mc) so that the mass Ma does not move relative
SVEN [57.7K]

Answer:

The magnitude of the force F is given by

F =  (M_{a} + M_{b} + M_{c} ) *(M_{b}*g/(\sqrt{M_{a} ^{2}-M_{b} ^{2}}))

Explanation:

Given there are three blocks of masses M_{a}, M_{b} and M_{c} (ref image in attachment)

When all three masses move together at an acceleration a, the force F is given by

F =  (M_{a} + M_{b} + M_{c} ) *a    ................(equation 1)

Also it is given that M_{a} does not move with respect to M_{c}, which gives tension T  is exerted on pulley  by M_{a} only, Hence tension T is

T = M_{a} *a    ..........(equation 2)

There is also also tension exerted by M_{b}. There are two components here: horizontal due to acceleration a and vertical component due to gravity g. Thus tension is given by

T = M_{b} \sqrt{a^{2} +g^{2} }   ................(equation 3)

From equation 2 and 3, we get

M_{a} *a  = M_{b} \sqrt{a^{2} +g^{2} }  

Squaring both sides we get

M_{a} ^{2} *a^{2} = M_{b} ^{2} * (a^{2}+g^{2})

M_{a} ^{2} *a^{2} = (M_{b} ^{2} * a^{2})+ (M_{b} ^{2} *g^{2})

(M_{a} ^{2}  -  M_{b} ^{2}) * a^{2} = M_{b} ^{2} *g^{2}

a^{2} = M_{b} ^{2} *g^{2}/(M_{a} ^{2}  -  M_{b} ^{2})

Taking square root on both sides, we get acceleration a

a = M_{b}*g/(\sqrt{M_{a} ^{2}-M_{b} ^{2}})

Hence substituting the value of a in equation 1, we get

F =  (M_{a} + M_{b} + M_{c} ) *(M_{b}*g/(\sqrt{M_{a} ^{2}-M_{b} ^{2}}))

3 0
3 years ago
How does a Freebody diagram tell you about the net force an object?
Sloan [31]
So you subtract the numbers that are on the same axis. So if your gravitational force is 10 and your normal force is 5 you do 5-10 to get -5 since gravity acts downward
6 0
3 years ago
Other questions:
  • Michael is the captain of his school’s soccer team. What skill does Michael exhibit when he decides which player will take the p
    12·1 answer
  • If the accuracy in measuring the position of a particle increases, what happens to the accuracy in measuring its velocity? - The
    8·1 answer
  • A stone is thrown from the top of a building with an initial velocity of 20 m/s downward. The top of the building is 60 m above
    5·1 answer
  • What is an atomic nucleus​
    14·1 answer
  • Sally and Ramona were competing in a four-lap, one-mile foot race. Sally’s style was to run at a constant rate of 12 mph. Ramona
    7·1 answer
  • What color of light has the shortest wavelength
    14·1 answer
  • Have thick walls<br>Chamaer o the heart<br>which​
    14·1 answer
  • Sonia O'Sullivan of Ireland set the World Record in 1994 for the Women's 1000 m race with a time of 2 minutes and 45 seconds. Wh
    8·2 answers
  • Compare and contrast the way molecules behave in liquid to the way they behave in solids and gases.
    13·2 answers
  • suppose a 51 kg bungee jumper steps off the royal gorge bridge, in colorado. The bridge is situated 321 m above the arkansas riv
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!