Answer:
v₁ = -0.8087 m / s
Explanation:
To solve this problem we can use the conservation of momentum, for this we define a system formed by the man, the skateboard and the brick, therefore the force during the separation is internal and the momentum is conserved
Initial instant. When they are united
p₀ = 0
Final moment. After throwing the brick
= (m_man + m_skate) v1 + m_brick v2
the moment is preserved
p₀ = p_{f}
0 = (m_man + m_skate) v₁ + m_brick v₂
v₁ = -
the negative sign indicates that the two speeds are in the opposite direction
let's calculate
v₁ = -
v₁ = -0.8087 m / s
My calculator is about 1cm thick, 7cm wide, and 13cm long.
Its volume is (length) (width) (thick) = (13 x 7 x 1) = 91 cm³ .
The question wants me to assume that the density of my calculator
is about the same as the density of water. That doesn't seem right
to me. I could check it easily. All I have to do is put my calculator
into water, watch to see if sinks or floats, and how enthusiastically.
I won't do that. I'll accept the assumption.
If its density is actually 1 g/cm³, then its mass is about 91 grams.
The choices of answers confused me at first, until I realized that
the choices are actually 1g, 10² g, 10⁴ g, and 10⁶ g.
My result of 91 grams is about 100 grams ... about 10² grams.
Your results could be different.
Answer:
Geothermal
Explanation:
Geothermal is obtained from the heat from the ground which makes it friendly
Answer:
True. Gold does have a higher density than tin