There are several ways the door can be locked, these ways illustrate combination.
There are 3375 possible combinations
From the question, we have:
--- the number of digits
---- the number of actions
Each of the three actions can either be:
- <em>Pressing one button</em>
- <em>Pressing a pair of buttons</em>
<em />
The number of ways of pressing a button is:
![\mathbf{n_1 = ^5C_1}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_1%20%3D%20%5E5C_1%7D)
Apply combination formula
![\mathbf{n_1 = \frac{5!}{(5-1)!1!}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_1%20%3D%20%5Cfrac%7B5%21%7D%7B%285-1%29%211%21%7D%7D)
![\mathbf{n_1 = \frac{5!}{4!1!}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_1%20%3D%20%5Cfrac%7B5%21%7D%7B4%211%21%7D%7D)
![\mathbf{n_1 = \frac{5 \times 4!}{4! \times 1}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_1%20%3D%20%5Cfrac%7B5%20%5Ctimes%204%21%7D%7B4%21%20%5Ctimes%201%7D%7D)
![\mathbf{n_1 = 5}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_1%20%3D%205%7D)
The number of ways of pressing a pair is:
![\mathbf{n_2 = ^5C_2}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_2%20%3D%20%5E5C_2%7D)
Apply combination formula
![\mathbf{n_2 = \frac{5!}{(5-2)!2!}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_2%20%3D%20%5Cfrac%7B5%21%7D%7B%285-2%29%212%21%7D%7D)
![\mathbf{n_2 = \frac{5!}{3!2!}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_2%20%3D%20%5Cfrac%7B5%21%7D%7B3%212%21%7D%7D)
![\mathbf{n_2 = \frac{5 \times 4 \times 3!}{3! \times 2 \times 1}}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_2%20%3D%20%5Cfrac%7B5%20%5Ctimes%204%20%5Ctimes%203%21%7D%7B3%21%20%5Ctimes%202%20%5Ctimes%201%7D%7D)
![\mathbf{n_2 = 10}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn_2%20%3D%2010%7D)
So, the number of ways of performing one action is:
![\mathbf{n =n_1 + n_2}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3Dn_1%20%2B%20n_2%7D)
![\mathbf{n =5 + 10}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3D5%20%2B%2010%7D)
![\mathbf{n =15}](https://tex.z-dn.net/?f=%5Cmathbf%7Bn%20%3D15%7D)
For the three actions, the number of ways is:
![\mathbf{Action = n^3}](https://tex.z-dn.net/?f=%5Cmathbf%7BAction%20%3D%20n%5E3%7D)
![\mathbf{Action = 15^3}](https://tex.z-dn.net/?f=%5Cmathbf%7BAction%20%3D%2015%5E3%7D)
![\mathbf{Action = 3375}](https://tex.z-dn.net/?f=%5Cmathbf%7BAction%20%3D%203375%7D)
Hence, there are 3375 possible combinations
Read more about permutation and combination at:
brainly.com/question/4546043