Answer:
<h3>
1) 7x - 5
</h3><h3>
2) 9y - 18
</h3><h3>
3) 0.5n + 4n
</h3><h3>
4) 2(w³+23)</h3><h3>
Step-by-step explanation:</h3>
1)
The product of seven and a number x: 7·x = 7x
<u>Five less than the product of seven and a number x:</u>
<h3>
7x - 5
</h3>
2)
nine times a number y: 9·y = 9y
<u>The difference of nine times a number y and eighteen:</u>
<h3>
9y - 18
</h3>
3)
half a number n: 0.5n
four times the number: 4·n = 4n
<u>Half a number n increased by four times the number:</u>
<h3>
0.5n + 4n
</h3>
4)
a number w cubed: w³
the sum of a number w cubed and twenty-three: w³+23
<u>Twice the sum of a number w cubed and twenty-three:</u>
<h3>2(
w³+23)</h3>
If they get unexpected results they could note what they could've done wrong or what they could change in a next trail of experiments. Or look back and see what different happened to they could've hypothesized. There could be many different courses on what to do next.
Answer:
Listed
Please mark me as the brainliest and thanks
Answer:
The measures of the angles are 150° and 30°.
Step-by-step explanation:
Let x and y represent the measures of the angles, with x representing the larger angle.
x + y = 180 . . . . . . the two angles are supplementary
x = 90 + 2y . . . . . one is 90° more than twice the other
___
Substituting the expression given by the second equation into the first, we have ...
(90 +2y) +y = 180
3y = 90 . . . . . . . . . . collect terms, subtract 90
y = 30 . . . . . . . . . . . divide by the coefficient of y
x = 180 -y = 150
The measures of the angles are 150° and 30°.
Answer:
Step-by-step explanation: