Answer:
The equations 3·x - 6·y = 9 and x - 2·y = 3 are the same
The possible solution are the points (infinite) on the line of the graph representing the equation 3·x - 6·y = 9 or x - 2·y = 3 which is the same line
Step-by-step explanation:
The given linear equations are;
3·x - 6·y = 9...(1)
x - 2·y = 3...(2)
The solution of a system of two linear equations with two unknowns can be found graphically by plotting the two equations and finding the coordinates of the point of intersection of the line graphs
Making 'y' the subject of both equations gives;
For equation (1);
3·x - 6·y = 9
3·x - 9 = 6·y
y = x/2 - 3/2
For equation (2);
x - 2·y = 3
x - 3 = 2·y
y = x/2 - 3/2
We observe that the two equations are the same and will have an infinite number of solutions
2x + 6 = 4x/2 + 12/2
To solve this, we need to transpose like terms to the same side.
2x - 4x/2 = 12/2 - 6
2x - 2x = 6 - 6
0 = 0
Since both sides are zero, it means that the equation has infinite number of solutions.
Step-by-step explanation:
Wdym mod is there mods on here