Given:
Planes X and Y are perpendicular to each other
Points A, E, F, and G are points only in plane X
Points R and S are points in both planes X and Y
Lines EA and FG are parallel
The lines which could be perpendicular to RS are EA and FG.
Complete Question
A milling process has an upper specification of 1.68 millimeters and a lower specification of 1.52 millimeters. A sample of parts had a mean of 1.6 millimeters with a standard deviation of 0.03 millimeters. what standard deviation will be needed to achieve a process capability index f 2.0?
Answer:
The value required is
Step-by-step explanation:
From the question we are told that
The upper specification is 
The lower specification is
The sample mean is
The standard deviation is 
Generally the capability index in mathematically represented as
![Cpk = min[ \frac{USL - \mu }{ 3 * \sigma } , \frac{\mu - LSL }{ 3 * \sigma } ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7BUSL%20-%20%20%5Cmu%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%20%2C%20%20%5Cfrac%7B%5Cmu%20-%20LSL%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%5D)
Now what min means is that the value of CPk is the minimum between the value is the bracket
substituting value given in the question
![Cpk = min[ \frac{1.68 - 1.6 }{ 3 * 0.03 } , \frac{1.60 - 1.52 }{ 3 * 0.03} ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7B1.68%20-%20%201.6%20%7D%7B%203%20%2A%20%200.03%20%7D%20%20%2C%20%20%5Cfrac%7B1.60%20-%20%201.52%20%7D%7B%203%20%2A%20%200.03%7D%20%5D)
=> ![Cpk = min[ 0.88 , 0.88 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%200.88%20%2C%200.88%20%20%5D)
So

Now from the question we are asked to evaluated the value of standard deviation that will produce a capability index of 2
Now let assuming that

So

=> 
=> 
So

=> 
Hence
![Cpk = min[ 2, 2 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%202%2C%202%20%5D)
So

So
is the value of standard deviation required
The length of extra cable that is required to connect the two pieces of existing cable is equal to 182 meters.
<h3>How to determine the length of extra cable?</h3>
In order to determine the length of extra cable that is required to connect the two pieces of existing cable, we would apply the law of cosine as follows:
B² = A² + C² - 2(A)(C)cosB
Substituting the given parameters into the formula, we have;
B² = 325.0² + 430.0² - 2(325.0)(430.0)cos23
B² = 105,625 + 184,900 - 279,500(0.9205)
B² = 290,525 - 257,279.75
B² = 33,245.25
B = √33,245.25
B = 182.33 ≈ 182 meters.
Read more on cosine law here: brainly.com/question/11000638
#SPJ1
Answer:
i dont know how to do it
Step-by-step explanation: