Answer: There are no like terms
Step-by-step explanation:
Answer:
Step-by-step explanation:
Given that the number of males in the classroom is three more than twice the number of females.
the total number of students is 57
Let x be the no of males then no of females = 
Also we have 3 more than twice no of females as

This equals x

No of males = 39, no of females = 18
Answer:
2
Step-by-step explanation:
Well, we could try adding up odd numbers, and look to see when we reach 400. But I'm hoping to find an easier way.
First of all ... I'm not sure this will help, but let's stop and notice it anyway ...
An odd number of odd numbers (like 1, 3, 5) add up to an odd number, but
an even number of odd numbers (like 1,3,5,7) add up to an even number.
So if the sum is going to be exactly 400, then there will have to be an even
number of items in the set.
Now, let's put down an even number of odd numbers to work with,and see
what we can notice about them:
1, 3, 5, 7, 9, 11, 13, 15 .
Number of items in the set . . . 8
Sum of all the items in the set . . . 64
Hmmm. That's interesting. 64 happens to be the square of 8 .
Do you think that might be all there is to it ?
Let's check it out:
Even-numbered lists of odd numbers:
1, 3 Items = 2, Sum = 4
1, 3, 5, 7 Items = 4, Sum = 16
1, 3, 5, 7, 9, 11 Items = 6, Sum = 36
1, 3, 5, 7, 9, 11, 13, 15 . . Items = 8, Sum = 64 .
Amazing ! The sum is always the square of the number of items in the set !
For a sum of 400 ... which just happens to be the square of 20,
we just need the <em><u>first 20 consecutive odd numbers</u></em>.
I slogged through it on my calculator, and it's true.
I never knew this before. It seems to be something valuable
to keep in my tool-box (and cherish always).
Answer: The correct option is triangle GDC
Step-by-step explanation: Please refer to the picture attached for further details.
The dimensions give for the cube are such that the top surface has vertices GBCF while the bottom surface has vertices HADE.
A right angle can be formed in quite a number of ways since the cube has right angles on all six surfaces. However the question states that the diagonal that forms the right angle runs "through the interior."
Therefore option 1 is not correct since the diagonal formed in triangle BDH passes through two surfaces. Triangle DCB is also formed with its diagonal passing only along one of the surfaces. Triangle GHE is also formed with its diagonal running through one of the surfaces.
However, triangle GDC is formed with its diagonal passing through the interior as shown by the "zigzag" line from point G to point D. And then you have another line running from vertex D to vertex C.