It’s the first one.
the one with 9 squares with 2 filled in
15 is the answer it is correct can
The first, third, and sixth are correct.
Check the picture below.
so we can say that two sides are "4" each in length, since opposite sides are equal, let's find how long the slanted sides are.
![~~~~~~~~~~~~\textit{distance between 2 points} \\\\ (\stackrel{x_1}{-4}~,~\stackrel{y_1}{2})\qquad (\stackrel{x_2}{3}~,~\stackrel{y_2}{5})\qquad \qquad d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ d=\sqrt{[3 - (-4)]^2 + [5 - 2]^2}\implies d=\sqrt{(3+4)^2+3^2} \\\\\\ d=\sqrt{49+9}\implies d=\sqrt{58} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{\Large Perimeter}}{4~~ + ~~4~~ + ~~\sqrt{58}~~ + ~~\sqrt{58}\implies 8+2\sqrt{58}}](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%20%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B-4%7D~%2C~%5Cstackrel%7By_1%7D%7B2%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B3%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20d%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B%5B3%20-%20%28-4%29%5D%5E2%20%2B%20%5B5%20-%202%5D%5E2%7D%5Cimplies%20d%3D%5Csqrt%7B%283%2B4%29%5E2%2B3%5E2%7D%20%5C%5C%5C%5C%5C%5C%20d%3D%5Csqrt%7B49%2B9%7D%5Cimplies%20d%3D%5Csqrt%7B58%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Perimeter%7D%7D%7B4~~%20%2B%20~~4~~%20%2B%20~~%5Csqrt%7B58%7D~~%20%2B%20~~%5Csqrt%7B58%7D%5Cimplies%208%2B2%5Csqrt%7B58%7D%7D)
Answer:
Option 2) Null hypothesis: p = 0.078
, Alternate hypothesis: p > 0.078
Step-by-step explanation:
We are given the following in the question:
According to the National Center of Health Statistics, about 7.8% of all babies born in the U.S. are categorized as low birth weight.
Sample size, n = 1200
p = 7.8% = 0.078
We have to carry a hypothesis test whether national percentage is higher than 7.8% or not.
Thus, we can design the null and the alternate hypothesis

Thus, the correct answer is:
Option 2) Null hypothesis: p = 0.078
, Alternate hypothesis: p > 0.078