Answer:

Step-by-step explanation:
Height of the Rectangle
Width of the Rectangle
Area of the Rectangle = Height X Width

The area of the rectangle is 
We want to solve the Initial Value Problem y' = y + 4xy, with y(0) = 1.
To use Euler's method, define
y(i+1) = y(i) + hy'(i), for i=0,1,2, ...,
where
h = 0.1, the step size.,
x(i) = i*h
1st step.
y(0) = 1 (given) and x(0) = 0.
y(1) ≡ y(0.1) = y(0) + h*[4*x(0)*y(0)] = 1
2nd step.
x(1) = 0.1
y(2) ≡ y(0.2) = y(1) + h*[4*x(1)*y(1)] = 1 + 0.1*(4*0.1*1) = 1.04
3rd step.
x(2) = 0.2
y(3) ≡ y(0.3) = y(2) + h*[4*x(2)*y(2)] = 1.04 + 0.1*(4*0.2*1.04) = 1.1232
4th step.
x(3) = 0.3
y(4) ≡ y(0.4) = y(3) + h*[4*x(3)*y(3)] = 1.1232 + 0.1*(4*0.3*1.1232) = 1.258
5th step.
x(4) = 0.4
y(5) ≡ y(0.5) = y(4) + h*[4*x(4)*y(4)] = 1.258 + 0.1*(4*0.4*1.258) = 1.4593
Answer: y(0.5) = 1.4593
Answer:
A: a^3
B: c^1 or just c
Step-by-step explanation:
Subtract the exponents
Hello! There are a few things that determine whether or not something is a function. In this case, to determine whether a relation is a function, we look at the domains, which are the x-coordinates, the first number of the pair. If the number occurs in the x-coordinate for more than one pair in a relation, then it's not a function. If a number only occurs as an x-coordinate once in the relation, then it's a function. In other words, they each have only one y-coordinate in the relation. For this question, the first, second, and third relations are functions. The fourth one is not a function, because the 3 has more than one y-coordinate, so it occurs as an x-coordinate more than once. Here are the answers easier to read.
1st : yes
2nd: yes
3rd: yes
4th: no