By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
<h3>How to evaluate a piecewise function at given values</h3>
In this question we have a <em>piecewise</em> function formed by three expressions associated with three respective intervals. We need to evaluate the expression at a value of the <em>respective</em> interval:
<h3>r(- 3): </h3>
-3 ∈ (- ∞, -1]
r(- 3) = - 2 · (- 3) + 9
r (- 3) = 15
<h3>r(- 1):</h3>
-1 ∈ (- ∞, -1]
r(- 1) = - 2 · (- 1) + 9
r (- 1) = 11
<h3>r(1):</h3>
1 ∈ (-1, 5)
r(1) = 2 · 1² - 4 · 1 - 5
r (1) = - 7
<h3>r(5):</h3>
5 ∈ [5, + ∞)
r(5) = 4 · 5 - 7
r (5) = 13
By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
To learn more on piecewise functions: brainly.com/question/12561612
#SPJ1
Answer:
c
Step-by-step explanation:
Given that:

since cos (kπ) = 
Then, the series can be expressed as:

In the sum of an alternating series, the best bound on the remainder for the approximation is related to its
term.
∴




<span>c. 100x^8 because the square root or 10k is 100 and 64 is 8
</span>
9514 1404 393
Answer:
0
Step-by-step explanation:
The function is defined everywhere except at x=-6. The limit value is the function value at that point.
f(6) = (6^2 -36)/(6 +6) = 0/12 = 0
The limit of the function is 0 as x → 6.