25% will be expected to have the TTYy combination.
Hope this helps!
Answer:
C
Explanation:
I think it is c but im only answering bc i am really bored.
Answer:
Explanation:
Since it is a recessive gene, tumor suppressor genes required the inactivation of both alleles, this is usually accomplished by the mutation of one allele and a targeted homozygous deletion of the second allele. This leads to an effective inactivation of the suppressor genes with the mutations acting a a dominant negatives. This way, patients are put at a higher risk of developing cancer
Answer:
<em><u>D. The first flowering plants were introduced toward the end of the Mesozoic era.</u></em>
<em><u /></em>
Explanation:
Following the Paleozoic Era, the Mesozoic Era or <em>Age of Conifers</em> began approximately 250 million years ago. This major geological era brought about the ancestors of many of the plant and animal groups still in existence today.
The Mesozoic era is marked by 3 divisions:
- the Triassic Period,
- the Jurassic Period,
- and the Cretaceous Period.
Animals and plants slowly recovered after the mass extinction in the Permian-Triassic extinction that led to the eradication of most aquatic marine species. They evolved to exploit varying niches in their environment, leading to a boom in terrestrial animals. Over time the planet's increasingly warm climate, abundant in atmospheric oxygen and carbon dioxide, contributed to the growth of diverse megaflora, that rapidly dominated the planet's terrestrial biosphere.
By the end of the <em>Mesozoic Era</em>, in the Cretaceous period, flowering plants (angiosperms) largely replaced the dominant seed ferns of the <em>Triassic</em>, and the conifers, cycads and gymnosperms of the <em>Jurassic</em>.
<em>Varied dispersal mechanisms in angiosperms co-evolved with the evolution of certain types of fauna. Plants used animal life, including herbivorous reptiles and early mammal-like species to disperse large seeds.</em>
The subcellular structures of neuron that forms the basis for transmission of nerve impulses are the synaptic vesicles.
What are the steps in impulse transmission between neurons?
- The action potential or nerve impulse reaches the <u>axon</u> of neuron and depolarises the membrane.
- Voltage gated Calcium channels open .
- Arrival of action potential causes the synaptic vesicle to attach to presynaptic membrane.
- Calcium influx triggers release of neurotransmitter.
- This neurotransmitters bind to postsynaptic membrane and new impulses are created.
Synaptic vesicle under resting condition:
- The neurotransmitter molecules are stored in synaptic vesicles.
- If the neurotransmitter leak from the vesicles, they are destroyed by enzymes.
- During resting condition, they are placed randomly.
- When an impulse reaches the axon, vesicles are arranged in the presynaptic membrane.
Thus from the above we can conclude that, synaptic vesicles are the subcellular structures in transmission of nerve impulses and , under resting condition they are placed randomly.
To know more about transmission of nerve impulses :
brainly.com/question/840056
#SPJ4