C(-8,2) and M(0,0) , since M is at the origin. Let x₁ and y₁ be the
coordinates of S →s(x₁ , y₁)
C(-8,2) and S(x₁ , y₁)
The coordinates of M, the midpoint of CS are M(x₂ , y₂)
a) x₂ = (-8 + x₁)/2 , but x₂ = 0, then :
0 = -4+x₁/2 and x₁ = 8
b) y₂ = (2+y₁)/2 , but y₂ = o, then:
0 = 2+ y₁/2 and y₂ = -2
Then the coordinates of S are S(8 , -2)
There are different formulas for each different shape.
Answer:
$45.8
Step-by-step explanation:
32.06 / 14= 2.29
2.29x20=45.8
9514 1404 393
Answer:
- rewrite: 2x^2 +5x +20x +50
- factored: (x +10)(2x +5)
Step-by-step explanation:
I find this approach the most straightforward of the various ways that trinomial factoring is explained or diagramed.
You want two factors of "ac" that have a total of "b". Here, that means you want factors of 2·50 = 100 that have a total of 25. It is helpful to know your times tables.
100 = 1·100 = 2·50 = 4·25 = 5·20 = 10·10
The sums of these factor pairs are 101, 52, 29, 25, and 20. We want the pair with a sum of 25, so that's 5 and 20.
The trinomial can be rewritten using these factors as ...
2x^2 +5x +20x +50
Then it can be factored by grouping consecutive pairs:
(2x^2 +5x) +(20x +50) = x(2x +5) +10(2x +5) = (x +10)(2x +5)
_____
<em>Additional comment</em>
It doesn't matter which of the factors of the pair you write first. If our rewrite were ...
2x^2 +20x +5x +50
Then the grouping and factoring would be (2x^2 +20x) +(5x +50)
= 2x(x +10) +5(x +10) = (2x +5)(x +10) . . . . . same factoring