x = amount of ounces in first substance
y = amount of ounces in second substance
well, we know that substance A has "x" ounces and has 60% of salt, so the total amount of salt in A will just be 60% of "x" or namely 0.60x.
likewise for the substance B, 85% of "y" will just be 0.85y.
we know that if we add those ounces we'll end up with a mixture of 40 ounces, thus x + y = 40, and their combined pure salt amounts will also be 0.6x + 0.85y, so let's proceed.
![\bf \begin{array}{lcccl} &\stackrel{solution}{quantity}&\stackrel{\textit{\% of }}{amount}&\stackrel{\textit{oz of }}{amount}\\ \cline{2-4}&\\ A&x&0.6&0.6x\\ B&y&0.85&0.85y\\ \cline{2-4}&\\ mixture&40&0.65&26 \end{array}~\hfill \begin{cases} x+y=40\\ \boxed{y} = 40 -x\\[-0.5em] \hrulefill\\ 0.6x+0.85y=26 \end{cases} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blcccl%7D%20%26%5Cstackrel%7Bsolution%7D%7Bquantity%7D%26%5Cstackrel%7B%5Ctextit%7B%5C%25%20of%20%7D%7D%7Bamount%7D%26%5Cstackrel%7B%5Ctextit%7Boz%20of%20%7D%7D%7Bamount%7D%5C%5C%20%5Ccline%7B2-4%7D%26%5C%5C%20A%26x%260.6%260.6x%5C%5C%20B%26y%260.85%260.85y%5C%5C%20%5Ccline%7B2-4%7D%26%5C%5C%20mixture%2640%260.65%2626%20%5Cend%7Barray%7D~%5Chfill%20%5Cbegin%7Bcases%7D%20x%2By%3D40%5C%5C%20%5Cboxed%7By%7D%20%3D%2040%20-x%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%200.6x%2B0.85y%3D26%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
