3.5(2h+4.5)=57.75
7h+15.75=57.75
7h=57.75-15.75
7h=42
h=42/7
h=6
Answer:
x = -10 ° + π/6 + (2 π n_1)/3 for n_1 element Z
or x = 30 ° + π/2 + 2 π n_2 for n_2 element Z
Step-by-step explanation:
Solve for x:
sin(2 x) = cos(x + 30 °)
Rewrite the right hand side using cos(θ) = sin(θ + π/2):
sin(2 x) = sin(30 ° + π/2 + x)
Take the inverse sine of both sides:
2 x = -30 ° + π/2 - x + 2 π n_1 for n_1 element Z
or 2 x = 30 ° + π/2 + x + 2 π n_2 for n_2 element Z
Add x to both sides:
3 x = -30 ° + π/2 + 2 π n_1 for n_1 element Z
or 2 x = 30 ° + π/2 + x + 2 π n_2 for n_2 element Z
Divide both sides by 3:
x = -10 ° + π/6 + (2 π n_1)/3 for n_1 element Z
or 2 x = 30 ° + π/2 + x + 2 π n_2 for n_2 element Z
Subtract x from both sides:
Answer: x = -10 ° + π/6 + (2 π n_1)/3 for n_1 element Z
or x = 30 ° + π/2 + 2 π n_2 for n_2 element Z
2(3-1) ² / 1+1 x 3+3
Use PEMDAS
2(2) ²/1+1 x 3+3
4 ² / 2x6
16/12
1.333
Yes, that's the definition of "midpoint."
xa + xb
xmidpoint = --------------
2
ya + yb
ymidpoint = --------------
2
The correct answer is: AB = 3.11
Explanation:
Since

--- (1)

= 50°
base = 2
And hypotenuse = AB
Plug in the values in (1):
(1) => cos(50°) = 2/AB
=> AB = 2/0.643
=> AB = 3.11