1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dalvyx [7]
3 years ago
10

You see a£97 top but don't have enough money so u borrow£50 from ur mumsy and £50 from ur dad=100 you buy the top and get £3 cha

nge then u decide to give ur mum £1 and ur dada £1 and keep the other £1 for ur self you now owe ur mumsy £49 and ur dad £49 so 49+49=98 and ur £1 makes £99 where is the missing £1?
Mathematics
1 answer:
shtirl [24]3 years ago
8 0
There is no missing pound. 97(the cost of the top)+1(the pound you kept)=98. You gave the other 2 pounds to your parents so all of the money is there.
You might be interested in
CAN SOMEONE JUST PLEASE ANSWER THIS ASAP FOR BRAINLIEST!!
nirvana33 [79]

3(6 + x) (6 - x)

I hope this helps. (:

7 0
3 years ago
Read 2 more answers
Can you simplify 14x+11 please??
ad-work [718]

Answer:

It cannot be further simplified

Step-by-step explanation:

11 is a prime number, so there are no numbers that can go into 14 and 11 (besides 1 and 1 would not simplify the problem)

6 0
3 years ago
What’s the slope and y - intercept of this equation ?
Jlenok [28]
Slope 4x and y-intercept is -10 I think I’m positive
8 0
2 years ago
Read 2 more answers
For a fundraiser , Brad sold 2 less than 3 times the number of candy bars calls that Mary did . If they sold 334 total bars, fin
marysya [2.9K]
x-\ Mary\\
3x-2-\ Brad\\\\
x+3x-2=334\\
4x-2=334\ \ |add\ 2\\
4x=336\ \ | divide\ by\ 4\\x=84\\
3x-2=3*84-2=252-2=250\\\\
Brad\ sold\ 250\ bars\ and\ Mary\ sold\ 84\ bars.
8 0
3 years ago
La potencia que se obtiene de elevar a un mismo exponente un numero racional y su opuesto es la misma verdadero o falso?
malfutka [58]

Answer:

Falso.

Step-by-step explanation:

Sea d = \frac{a}{b} un número racional, donde a, b \in \mathbb{R} y b \neq 0, su opuesto es un número real c = -\left(\frac{a}{b} \right). En el caso de elevarse a un exponente dado, hay que comprobar cinco casos:

(a) <em>El exponente es cero.</em>

(b) <em>El exponente es un negativo impar.</em>

(c) <em>El exponente es un negativo par.</em>

(d) <em>El exponente es un positivo impar.</em>

(e) <em>El exponente es un positivo par.</em>

(a) El exponente es cero:

Toda potencia elevada a la cero es igual a uno. En consecuencia, c = d = 1. La proposición es verdadera.

(b) El exponente es un negativo impar:

Considérese las siguientes expresiones:

d' = d^{-n} y c' = c^{-n}

Al aplicar las definiciones anteriores y las operaciones del Álgebra de los números reales tenemos el siguiente desarrollo:

d' = \left(\frac{a}{b} \right)^{-n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{-n}

d' = \left(\frac{a}{b} \right)^{(-1)\cdot n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{(-1)\cdot n}

d' = \left[\left(\frac{a}{b} \right)^{-1}\right]^{n}y c' = \left[(-1)^{-1}\cdot \left(\frac{a}{b} \right)^{-1}\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c = (-1)^{n}\cdot \left(\frac{b}{a} \right)^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{b}{a} \right)\right]^{n}

d' = \left(\frac{b}{a} \right)^{n} y c' = \left[-\left(\frac{b}{a} \right)\right]^{n}

Si n es impar, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = - \left(\frac{b}{a} \right)^{n}

Puesto que d' \neq c', la proposición es falsa.

(c) El exponente es un negativo par.

Si n es par, entonces:

d' = \left(\frac{b}{a} \right)^{n} y c' = \left(\frac{b}{a} \right)^{n}

Puesto que d' = c', la proposición es verdadera.

(d) El exponente es un positivo impar.

Considérese las siguientes expresiones:

d' = d^{n} y c' = c^{n}

d' = \left(\frac{a}{b}\right)^{n} y c' = \left[-\left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = \left[(-1)\cdot \left(\frac{a}{b} \right)\right]^{n}

d' = \left(\frac{a}{b} \right)^{n} y c' = (-1)^{n}\cdot \left(\frac{a}{b} \right)^{n}

Si n es impar, entonces:

d' = \left(\frac{a}{b} \right)^{n} y c' = - \left(\frac{a}{b} \right)^{n}

(e) El exponente es un positivo par.

Considérese las siguientes expresiones:

d' = \left(\frac{a}{b} \right)^{n} y c' = \left(\frac{a}{b} \right)^{n}

Si n es par, entonces d' = c' y la proposición es verdadera.

Por tanto, se concluye que es falso que toda potencia que se obtiene de elevar a un mismo exponente un número racional y su opuesto es la misma.

3 0
3 years ago
Other questions:
  • Two drivers, Alison and Kevin, are participating in a drag race. Beginning from a standing start, they each proceed with a const
    15·1 answer
  • Factor completely. x2−5x+18x2-5x+18
    6·1 answer
  • Caroline starts with $20 in her piggy bank. Each week she adds $4 to the piggy bank. After how many weeks will Caroline have mor
    9·2 answers
  • Evaluate the expression described below if the number is 4.
    13·1 answer
  • Geometry distance formula
    10·1 answer
  • GUYS!! I KNOW IM SUPER ANNOYING BUT I NEED MORE HELP!!! PWEASEE!!!
    6·2 answers
  • If A = 2/3,B =0.4,C = - 2 1/5, D= 4 1/2 how far is 0 from C
    12·1 answer
  • Calculate each unknown side length. Round the answer to the nearest tenth.
    8·1 answer
  • Given that -15 is a root of x² +mx +45 = 0 find the constant m​
    14·1 answer
  • Find the perimeter of composite figures
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!