1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kryger [21]
3 years ago
5

Which equations have the same value of x as Two-thirds (6 x + 12) = negative 24? Select two options

Mathematics
2 answers:
Valentin [98]3 years ago
7 0

Answer:

-36

Step-by-step explanation:

Brainliest OR I WILL FIND YU

OLga [1]3 years ago
6 0

Answer:

-6

Step-by-step explanation:

so all you have to do is subtract the 12 from the -24. to get -36.

leaving you with this:

6x = -36

then all you do is divide the 6x from the -36, to get -6.

You might be interested in
A patient is ordered 1.6 g Drug A every 8 hours over a 24
Vlad [161]

Answer:

33.6 grams

Step-by-step explanation:

Rate 1;

8 hours = 1.6 g

24 hours = 24 × 1.6/8 = 4.8 hours

Rate 2;

4 hours = 1.6 g

72 hours = 72 × 1.6/4 = 28.8 g

Total grams of Drug A that the patient receive

altogether = 28.8 + 4.8 = 33.6 g

5 0
2 years ago
What is the value of the expression 3² .(2³+4)/2²
Ber [7]

Answer:

27

Step-by-step explanation:

3^2(2^3+4)/2^2

3^2(8+4)/2^2

3^2(12)/2^2

9(12)/4

108/4

27

4 0
3 years ago
If 2 sides of a triangle measure 6 and 16 find the range for the 3rd side
tangare [24]

Step-by-step explanation:

Range if third side is in between 10-22

Reason:

<em>For </em><em>the </em><em>lowest </em><em>value </em><em>of </em><em>third </em><em>side </em><em>1</em><em>6</em><em>-</em><em>6</em><em>=</em><em> </em><em>1</em><em>0</em><em> </em>

<em>For </em><em>the </em><em>highest</em><em> </em><em>value</em><em> </em><em>if </em><em>third</em><em> </em><em>side </em><em>1</em><em>6</em><em>+</em><em>6</em><em>=</em><em> </em><em>2</em><em>2</em>

<em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em><em>⚡</em>

8 0
3 years ago
Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. (If an answer d
aliya0001 [1]

The Lagrangian

L(x,y,z,\lambda)=x^2+y^2+z^2+\lambda(x^4+y^4+z^4-13)

has critical points where the first derivatives vanish:

L_x=2x+4\lambda x^3=2x(1+2\lambda x^2)=0\implies x=0\text{ or }x^2=-\dfrac1{2\lambda}

L_y=2y+4\lambda y^3=2y(1+2\lambda y^2)=0\implies y=0\text{ or }y^2=-\dfrac1{2\lambda}

L_z=2z+4\lambda z^3=2z(1+2\lambda z^2)=0\implies z=0\text{ or }z^2=-\dfrac1{2\lambda}

L_\lambda=x^4+y^4+z^4-13=0

We can't have x=y=z=0, since that contradicts the last condition.

(0 critical points)

If two of them are zero, then the remaining variable has two possible values of \pm\sqrt[4]{13}. For example, if y=z=0, then x^4=13\implies x=\pm\sqrt[4]{13}.

(6 critical points; 2 for each non-zero variable)

If only one of them is zero, then the squares of the remaining variables are equal and we would find \lambda=-\frac1{\sqrt{26}} (taking the negative root because x^2,y^2,z^2 must be non-negative), and we can immediately find the critical points from there. For example, if z=0, then x^4+y^4=13. If both x,y are non-zero, then x^2=y^2=-\frac1{2\lambda}, and

xL_x+yL_y=2(x^2+y^2)+52\lambda=-\dfrac2\lambda+52\lambda=0\implies\lambda=\pm\dfrac1{\sqrt{26}}

\implies x^2=\sqrt{\dfrac{13}2}\implies x=\pm\sqrt[4]{\dfrac{13}2}

and for either choice of x, we can independently choose from y=\pm\sqrt[4]{\frac{13}2}.

(12 critical points; 3 ways of picking one variable to be zero, and 4 choices of sign for the remaining two variables)

If none of the variables are zero, then x^2=y^2=z^2=-\frac1{2\lambda}. We have

xL_x+yL_y+zL_z=2(x^2+y^2+z^2)+52\lambda=-\dfrac3\lambda+52\lambda=0\implies\lambda=\pm\dfrac{\sqrt{39}}{26}

\implies x^2=\sqrt{\dfrac{13}3}\implies x=\pm\sqrt[4]{\dfrac{13}3}

and similary y,z have the same solutions whose signs can be picked independently of one another.

(8 critical points)

Now evaluate f at each critical point; you should end up with a maximum value of \sqrt{39} and a minimum value of \sqrt{13} (both occurring at various critical points).

Here's a comprehensive list of all the critical points we found:

(\sqrt[4]{13},0,0)

(-\sqrt[4]{13},0,0)

(0,\sqrt[4]{13},0)

(0,-\sqrt[4]{13},0)

(0,0,\sqrt[4]{13})

(0,0,-\sqrt[4]{13})

\left(\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2},0\right)

\left(-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2},0\right)

\left(\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,\sqrt[4]{\dfrac{13}2}\right)

\left(-\sqrt[4]{\dfrac{13}2},0,-\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},\sqrt[4]{\dfrac{13}2}\right)

\left(0,-\sqrt[4]{\dfrac{13}2},-\sqrt[4]{\dfrac{13}2}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},\sqrt[4]{\dfrac{13}3}\right)

\left(-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3},-\sqrt[4]{\dfrac{13}3}\right)

5 0
3 years ago
Find x to the nearest hundredth place.
Arada [10]

Answer:

C.  24.27 cm

Step-by-step explanation:

sin 65° = opposite ÷ hypotenuse

sin 65° = 22/x

multiply both sides of the equation by x

(sin 65°)x = 22

divide both sides of the equation by sin 65°

x = 22 ÷ sin 65°

punch in 65 sin into your calculator

x = 22 ÷ 0.90631

x = 24.27 cm

7 0
3 years ago
Other questions:
  • Tell whether the statement "All integers are rational numbers" is true or false. Explain your choice.
    14·1 answer
  • Dependent or Independent
    15·1 answer
  • Ella has 50 stacks of ten pennies in each stack. Describe how to find how many pennies Ella has it all.
    10·2 answers
  • The graph shows a system consisting of a linear equation and a quadratic equation. What is the solution to the system?
    7·1 answer
  • The population of the town is divided into three categories. A random sample of each category is surveyed about voting choices.
    10·1 answer
  • A faucet drip 2/3 gallon h2o in 10 hrs. how much h20 drips per day. 1/15,5/18,1 3/5 or 6 2/3 gallons
    13·1 answer
  • How to find a number to the nearest ten
    8·1 answer
  • How can you solve this math problem <br> 2/7y+5=9
    12·2 answers
  • Solve -1 is less than or equal to -9 x
    8·1 answer
  • Look at the image below
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!