Its an indirect proof, so 3 steps :-
1) you start with the opposite of wat u need to prove
2) arrive at a contradiction
3) concludeReport · 29/6/2015261
since you wanto prove 'diagonals of a parallelogram bisect each other', you start wid the opposite of above statement, like below :- step1 : Since we want to prove 'diagonals of a parallelogram bisect each other', lets start by assuming the opposite, that the diagonals of parallelogram dont bisect each other.Report · 29/6/2015261
Since, we assumed that the diagonals dont bisect each other,
OC≠OA
OD≠OBReport · 29/6/2015261
Since, OC≠OA, △OAD is not congruent to △OCBReport · 29/6/2015261
∠AOD≅∠BOC as they are vertical angles,
∠OAD≅∠OCB they are alternate interior angles
AD≅BC, by definition of parallelogram
so, by AAS, △OAD is congruent to △OCBReport · 29/6/2015261
But, thats a contradiction as we have previously established that those triangles are congruentReport · 29/6/2015261
step3 :
since we arrived at a contradiction, our assumption is wrong. so, the opposite of our assumption must be correct. so diagonals of parallelogram bisect each other.
Okay we know that tangent-chords creat 90 degree angles so what we have is a right triangle with a base of 9 and a height of 12, so do Pythoagoreas Theorem and we have 81+144=225 square root of 225 is 15 and that is AJ
Answer:
yes, 60%
Step-by-step explanation:
Step-bu-step explanation.....
![\bf \qquad \qquad \textit{direct proportional variation} \\\\ \textit{\underline{y} varies directly with \underline{x}}\qquad \qquad y=kx\impliedby \begin{array}{llll} k=constant\ of\\ \qquad variation \end{array} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ y = 4\frac{2}{3}x\qquad \qquad yes\qquad \checkmark\qquad \qquad k = 4\frac{2}{3} \\\\[-0.35em] ~\dotfill\\\\ y=3(x-1)\implies \stackrel{\textit{distributing}}{y=3x-3}\qquad \qquad yes\qquad \checkmark \qquad \qquad k=3](https://tex.z-dn.net/?f=%5Cbf%20%5Cqquad%20%5Cqquad%20%5Ctextit%7Bdirect%20proportional%20variation%7D%20%5C%5C%5C%5C%20%5Ctextit%7B%5Cunderline%7By%7D%20varies%20directly%20with%20%5Cunderline%7Bx%7D%7D%5Cqquad%20%5Cqquad%20y%3Dkx%5Cimpliedby%20%5Cbegin%7Barray%7D%7Bllll%7D%20k%3Dconstant%5C%20of%5C%5C%20%5Cqquad%20variation%20%5Cend%7Barray%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20y%20%3D%204%5Cfrac%7B2%7D%7B3%7Dx%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%5Cqquad%20%5Cqquad%20k%20%3D%204%5Cfrac%7B2%7D%7B3%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20y%3D3%28x-1%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bdistributing%7D%7D%7By%3D3x-3%7D%5Cqquad%20%5Cqquad%20yes%5Cqquad%20%5Ccheckmark%20%5Cqquad%20%5Cqquad%20k%3D3)
bear in mind that, direct proportional equations have a y-intercept.
for y = kx, is pretty much y = kx + 0, where 0 = y-intercept.
and the "k" constant of proportionality, is pretty much just its slope.
10%of30=3
3x4=12
A. 40%of 30=12 senior class members.
B. 60% of the class were not senior class members