For each of these problems, remember SOH-CAH-TOA.
Sine = opposite/hypotenuse
Cosine = adjacent/hypotenuse
Tangent = opposite/adjacent
5) Here we are looking for the cosine of the 30 degree angle. Cosine uses the adjacent side to the angle over the hypotenuse. Therefore, cos(30) = 43/50.
6) We have an unknown side length, of which is adjacent to 22 degrees, and the length of the hypotenuse. Since we know the adjacent side and the hypotenuse, we should use Cosine. Therefore, our equation to find the missing side length is cos(22) = x / 15.
7) When finding an angle, we always use the inverse of the trigonometry function we originally used. Therefore, if sin(A) = 12/15, then the inverse of that would be sin^-1 (12/15) = A.
8) We are again using an inverse trigonometry function here. We know the hypotenuse, as well as the side adjacent to the angle. Therefore, we should use the inverse cosine function. Using the inverse cosine function gives us cos^-1 (9/13) = 46 degrees.
Hope this helps!
Answer:
29 is answer.
Step-by-step explanation:
Given that the function s(t) represents the position of an object at time t moving along a line. Suppose s(2)=150 and s(5)=237.
To find average velocity of the object over the interval of time [1,3]
We know that derivative of s is velocity and antiderivative of velocity is position vector .
Since moving along a line equation of s is
use two point formula
gives the position at time t.
Average velocity in interval (1,3)
=![\frac{1}{3-1} (s(3)-s(1))\\=\frac{1}{2} [87+58-29-58]\\=29](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B3-1%7D%20%28s%283%29-s%281%29%29%5C%5C%3D%5Cfrac%7B1%7D%7B2%7D%20%5B87%2B58-29-58%5D%5C%5C%3D29)
Answer:
(82/3, -111/2) or x=82/3, y=-111/2
Step-by-step explanation:
Answer:
The answer is 3.
Step-by-step explanation:
I took the quiz.
Answer:
x > -1 or x < -1
Step-by-step explanation:
For the first equation, 5x-29 > -3
Step 1: Move the constant to the right and change its sign
5x-29 > -34
5x > -34+29
Step 2: Calculate the sum
5x > -34+29
5x > -5
Step 3: Divide both sides of the inequality by <em>5</em>
5x > -5
x > -1
<em><u>Answer</u></em><em><u>:</u></em> -1
For the second equation, 2x+31 < 29
Step 1: Move constant to the right and change its sign
2x+31 < 29
2x < 29-31
Step 2: Calculate the difference
2x < 29-31
2x < -2
Step 3: Divide both sides of the inequality by 2
2x < -2
x < -1
<em><u>Answer</u></em><em><u>:</u></em> x < -1