Answer:
Step-by-step explanation:
It maybe will be ![\neq x^{2} \leq \\ \\ \int\limits^a_b {x} \, dx \int\limits^a_b {x} \, dx \sqrt{x} \\ \left \{ {{y=2} \atop {x=2}} \right. \left \{ {{y=2} \atop {x=2}} \right. x^{2} x^{2} \sqrt{x} \lim_{n \to \infty} a_n \lim_{n \to \infty} a_n \neq \sqrt{x} \sqrt[n]{x} \frac{x}{y} \frac{x}{y} \alpha \beta x_{123} \\ x^{2} \int\limits^a_b {x} \, dx x^{2}](https://tex.z-dn.net/?f=%5Cneq%20x%5E%7B2%7D%20%5Cleq%20%5C%5C%20%5C%5C%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20%5Csqrt%7Bx%7D%20%5C%5C%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20%5Cleft%20%5C%7B%20%7B%7By%3D2%7D%20%5Catop%20%7Bx%3D2%7D%7D%20%5Cright.%20x%5E%7B2%7D%20x%5E%7B2%7D%20%5Csqrt%7Bx%7D%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%20%5Clim_%7Bn%20%5Cto%20%5Cinfty%7D%20a_n%20%5Cneq%20%5Csqrt%7Bx%7D%20%5Csqrt%5Bn%5D%7Bx%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Cfrac%7Bx%7D%7By%7D%20%5Calpha%20%5Cbeta%20x_%7B123%7D%20%5C%5C%20x%5E%7B2%7D%20%5Cint%5Climits%5Ea_b%20%7Bx%7D%20%5C%2C%20dx%20x%5E%7B2%7D)
Answer : The different is, find BC - AC and find AC + CB, find AB and find CA + BC are same.
Step-by-step explanation :
As see that, AB is a line segment in which point C is represented in between the line.
As we are given that:
AC = 3
CB = 7
So,
AC + CB = 3 + 7 = 10
Similarly,
CA + BC = 3 + 7 = 10
Similarly,
AB = AC + CB = 3 + 7 = 10
But,
BC - AC = 7 - 3 = 4
From this we conclude that, find AC + CB, find AB and find CA + BC are same things while find BC - AC is a different thing.
Hence, the different is, find BC - AC and find AC + CB, find AB and find CA + BC are same.
Answer:
It will travel

in 45 minutes.
Step-by-step explanation:
We can solve using proportions.

See explanation below.
Explanation:
The 'difference between roots and factors of an equation' is not a straightforward question. Let's define both to establish the link between the two..
Assume we have some function of a single variable
x
;
we'll call this
f
(
x
)
Then we can form an equation:
f
(
x
)
=
0
Then the "roots" of this equation are all the values of
x
that satisfy that equation. Remember that these values may be real and/or imaginary.
Now, up to this point we have not assumed anything about
f
x
)
. To consider factors, we now need to assume that
f
(
x
)
=
g
(
x
)
⋅
h
(
x
)
.
That is that
f
(
x
)
factorises into some functions
g
(
x
)
×
h
(
x
)
If we recall our equation:
f
(
x
)
=
0
Then we can now say that either
g
(
x
)
=
0
or
h
(
x
)
=
0
.. and thus show the link between the roots and factors of an equation.
[NB: A simple example of these general principles would be where
f
(
x
)
is a quadratic function that factorises into two linear factors.