Answer:
The only point (0,0) lies inside the shaded region and hence it gives a solution for the set of inequalities.
Step-by-step explanation:
See the graph attached to this question.
The solution of the set of inequalities is given by the shaded region on the graph.
Now, the point (0,5) is outside this shaded region, hence it can not be the solution.
The point (3,0) also is outside this shaded region, hence it can not be the solution.
The point (-3,0) also is outside this shaded region, hence it can not be the solution.
Now, the only point (0,0) lies inside the shaded region and hence it gives a solution for the set of inequalities. (Answer)
I have to assume that you mean it is a similar rectangle, since a triangle can not be similar to a rectangle. In that case the original measurements are 4x4.5.
By doubling them, you get a rectangle with the measurements of 8x9 and thus the area is 72
Answer:
- y = -(x-1)² . . . . reflected over the x-axis
- y = (x-1)² +1 . . . . translated up by 1 unit
- y = (x+1)² . . . . reflected over the y-axis
- y = (x-2)² . . . . translated right by 1 unit
- y = (x-1)² -3 . . . . translated down by 3 units
- y = (x+3)² . . . . translated left by 4 units
Step-by-step explanation:
Since you have studied transformations, you are familiar with the effect of different modifications of the parent function:
- f(x-a) . . . translates right by "a" units
- f(x) +a . . . translates up by "a" units
- a·f(x) . . . vertically scales by a factor of "a". When a < 0, reflects across the x-axis
- f(ax) . . . horizontally compresses by a factor of "a". When a < 0, reflects across the y-axis.
Note that in the given list of transformed functions, there is one that is (x+1)². This is equivalent to both f(x+2) and to f(-x). The latter is a little harder to see, until we realize that (-x-1)² = (x+1)². That is, this transformed function can be considered to be either a translation of (x-1)² left by 2 units, or a reflection over the y-axis.
Answer:
3
Step-by-step explanation:
Answer: A = 600(
)
Step-by-step explanation:
The rate = 13% = 0.13
Let I be the initial value = 600 mg
The Equation will be
A = I (1 - R%)
A = 600( 1 - 0.13)
A = 600(
)