Answer:
Required Probability = 0.97062
Step-by-step explanation:
We are given that the weights of newborn baby boys born at a local hospital are believed to have a normal distribution with a mean weight of 4016 grams and a standard deviation of 532 grams.
Let X = weight of the newborn baby, so X ~ N(
)
The standard normal z distribution is given by;
Z =
~ N(0,1)
Now, probability that the weight will be less than 5026 grams = P(X < 5026)
P(X < 5026) = P(
<
) = P(Z < 1.89) = 0.97062
Therefore, the probability that the weight will be less than 5026 grams is 0.97062 .
The right answer is -2/3
please see the attached picture for full solution
Hope it helps..
Good luck on your assignment..
<span>The best way for Norm to store his money is through C. A money market account paying 3.5% interest, renewable for three-month commitments. Even though a four-year CD offers a higher interest at 4.8%, the fact that there is a substantial penalty for early withdrawal is a negative factor for Norm. His daughter needs the money after 2 years since she is already a junior in high school.</span>
Answer:

Step-by-step explanation:
Answer:
NO amount of hour passed between two consecutive times when the water in the tank is at its maximum height
Step-by-step explanation:
Given the water tank level modelled by the function h(t)=8cos(pi t /7)+11.5. At maximum height, the velocity of the water tank is zero
Velocity is the change in distance with respect to time.
V = {d(h(t)}/dt = -8π/7sin(πt/7)
At maximum height, -8π/7sin(πt/7) = 0
-Sin(πt/7) = 0
sin(πt/7) = 0
Taking the arcsin of both sides
arcsin(sin(πt/7)) = arcsin0
πt/7 = 0
t = 0
This shows that NO hour passed between two consecutive times when the water in the tank is at its maximum height