Answer:
If
and
, then 
Step-by-step explanation:
This is a problem that utilizes both substitution and the order of operations.

The answer is 14 because a negative number multiplied by another negative number is positive. So (-7)*(-2) is 14.
Answer:
Option C is correct.
Step-by-step explanation:
A direct variation function is
y/x = k
i.e. we can say that the ratio of y and x is equal to a constant value k.
We will check for each Option given.
Option A
7/2 = 7/2
8/3 = 8/3
9/4 = 9/4
10/5 = 2
11/6 = 11/6
Option D is incorrect as y/x ≠ k as ratio of y/x for each value of table doesn't equal to constant
Option B
-3/2 = -3/2
-5/4 = -5/4
-6/6 = -1
-7/8 = -7/8
-8/10 = -4/5
Option B is incorrect as y/x ≠ k as ratio of y/x for each value of table doesn't equal to constant
Option C
10/-5 = -2
8/-4 = -2
6/-3 = -2
4/-2 = -2
2/-1 = -2
Option C is correct as y/x = k as ratio of y/x for each value in table c is equal to constant value -2
Option D
-3/-2 = 3/2
-3/1 = -3
-3/0 = 0
-3/1 = -3
-3/2 = -3/2
Option D is incorrect as y/x ≠ k as ratio of y/x for each value of table doesn't equal to constant .
SO, Option C is correct.
Y= 2x+10 would be the equation and it would have no solution because there's no value if x nor y
(Простите, пожалуйста, мой английский. Русский не мой родной язык. Надеюсь, у вас есть способ перевести это решение. Если нет, возможно, прилагаемое изображение объяснит достаточно.)
Use the shell method. Each shell has a height of 3 - 3/4 <em>y</em> ², radius <em>y</em>, and thickness ∆<em>y</em>, thus contributing an area of 2<em>π</em> <em>y</em> (3 - 3/4 <em>y</em> ²). The total volume of the solid is going to be the sum of infinitely many such shells with 0 ≤ <em>y</em> ≤ 2, thus given by the integral

Or use the disk method. (In the attachment, assume the height is very small.) Each disk has a radius of √(4/3 <em>x</em>), thus contributing an area of <em>π</em> (√(4/3 <em>x</em>))² = 4<em>π</em>/3 <em>x</em>. The total volume of the solid is the sum of infinitely many such disks with 0 ≤ <em>x</em> ≤ 3, or by the integral

Using either method, the volume is 6<em>π</em> ≈ 18,85. I do not know why your textbook gives a solution of 90,43. Perhaps I've misunderstood what it is you're supposed to calculate? On the other hand, textbooks are known to have typographical errors from time to time...