From the standard normal tables, obtain
P(z<1.95) = 0.9744
P(z<0.37) = 0.6443
P(z<1.32) = 0.9066
P(z<1.82) = 0.9656
P(z<1.05) = 0.8531
P(z<2.05) = 0.9798
P(z<0.03) = 0.5120
P(z<0.53) = 0.7019
Answers:
Range of z Area
-------------- ---------------------------------------
a. 0 - 1.95 0.9744
b. 0 - 0.37 0.6443
c. 1.32 - 1.82 0.9656 - 0.9066 = 0.0590
d. 1.05 - 2.05 0.9798 - 0.8531 = 0.1267
e. 0.03 - 0.53 0.7019 - 0.5120 = 0.1899
For y=x^2-6x-11
complete the square
so roots
set y=0
0=x^2-6x-11
group x terms
0=(x^2-6x)-11
take 1/2 of linear coefient (-6) and square it
-6/2=-3, (-3)^2=9
add positive and neative to inside of parenthasees
0=(x^2-6x+9-9)-11
complete square
0=((x-3)^2-9)-11
expand
0=(x-3)^2-9-11
0=(x-3)^2-20
add 20 to both sides
20=(x-3)^2
sqrt both sides
remember positive and negative roots
+/-2√5=x-3
add 3 to both sides
3+/-2√5=x
so
x=3+2√5 and 3-2√5
Answer:

Step-by-step explanation:








Answer:
B) x = +/- 17
Step-by-step explanation: