Answer; g
Explanation: the human is a lot smaller than the train
Answer:
0.167m/s
Explanation:
According to law of conservation of momentum which States that the sum of momentum of bodies before collision is equal to the sum of the bodies after collision. The bodies move with a common velocity after collision.
Given momentum = Maas × velocity.
Momentum of glider A = 1kg×1m/s
Momentum of glider = 1kgm/s
Momentum of glider B = 5kg × 0m/s
The initial velocity of glider B is zero since it is at rest.
Momentum of glider B = 0kgm/s
Momentum of the bodies after collision = (mA+mB)v where;
mA and mB are the masses of the gliders
v is their common velocity after collision.
Momentum = (1+5)v
Momentum after collision = 6v
According to the law of conservation of momentum;
1kgm/s + 0kgm/s = 6v
1 =6v
V =1/6m/s
Their speed after collision will be 0.167m/s
r₁ = distance of point A from charge q₁ = 0.13 m
r₂ = distance of point A from charge q₂ = 0.24 m
r₃ = distance of point A from charge q₃ = 0.13 m
Electric field by charge q₁ at A is given as
E₁ = k q₁ /r₁² = (9 x 10⁹) (2.30 x 10⁻¹²)/(0.13)² = 1.225 N/C towards right
Electric field by charge q₂ at A is given as
E₂ = k q₂ /r₂² = (9 x 10⁹) (4.50 x 10⁻¹²)/(0.24)² = 0.703 N/C towards left
Since the electric field in left direction is smaller, hence the electric field by the third charge must be in left direction
Electric field at A will be zero when
E₁ = E₂ + E₃
1.225 = 0.703 + E₃
E₃ = 0.522 N/C
Electric field by charge "q₃" is given as
E₃ = k q₃ /r₃²
0.522 = (9 x 10⁹) q₃/(0.13)²
q₃ = 0.980 x 10⁻¹² C = 0.980 pC
The variable would be “X”