<span>A. The magnetic force increases.
F is inversely proportional to r</span>²<span>
Hope this helps!</span>
Explanation:
For this problem we have to take into account the expression
J = I/area = I/(π*r^(2))
By taking I we have
I = π*r^(2)*J
(a)
For Ja = J0r/R the current is not constant in the wire. Hence

and on the surface the current is

(b)
For Jb = J0(1 - r/R)

and on the surface

(c)
Ja maximizes the current density near the wire's surface
Additional point
The total current in the wire is obtained by integrating

and in a simmilar way for Jb
![I_{T}=\pi J_{0} \int\limits^R_0 {r^{2}(1-r/R)} \, dr = \pi J_{0}[\frac{R^{3}}{3}-\frac{R^{2}}{2R}]=\pi J_{0}[\frac{R^{3}}{3}-\frac{R^{2}}{2}]](https://tex.z-dn.net/?f=I_%7BT%7D%3D%5Cpi%20J_%7B0%7D%20%5Cint%5Climits%5ER_0%20%7Br%5E%7B2%7D%281-r%2FR%29%7D%20%5C%2C%20dr%20%3D%20%5Cpi%20%20%20J_%7B0%7D%5B%5Cfrac%7BR%5E%7B3%7D%7D%7B3%7D-%5Cfrac%7BR%5E%7B2%7D%7D%7B2R%7D%5D%3D%5Cpi%20J_%7B0%7D%5B%5Cfrac%7BR%5E%7B3%7D%7D%7B3%7D-%5Cfrac%7BR%5E%7B2%7D%7D%7B2%7D%5D)
And it is only necessary to replace J0 and R.
I hope this is useful for you
regards
Lol this easy 2+2 and then just add 4 that’s 8 add 3 more that’s 16 if you add 4
420vibesz
Answer:
The acceleration is 10 m/s²
Explanation:
The question seeks to show the relationship between force, mass and acceleration. Hence, the formula to be used here is that of force which is shown below
F = ma
where F is the force (800 N)
m is the mass (80 kg)
a is the acceleration (unknown)
From the formula above (Force = mass multiplied by acceleration)
800 N = 80 kg × a
a = 800 ÷ 80
a = 10 m/s²
<u>Answer:</u>
Lead
<u>Explanation:</u>
To get the density of the material, the formula would be:
mass divided by volume which is given by
.
Here in this problem, we are given a mass of
which occupies a volume of
.
So plugging the data in the above formula to find the density:
Density =
From the table, we can see that the material is Lead which has a density of 11.3c/cm^3.