2. The object's volume.
3. The density of the liquid.
Remember what the buoyant force is. It's the lifting force caused by the displacement of a fluid. I'm using the word fluid because it can be either a liquid or gas. For instance a helium balloon floats due to the buoyant force exceeding the mass of the balloon. So let's look at the options and see what's correct.
1. Object's mass
* This doesn't affect the buoyant force directly. It can have an effect if the object's mass is lower than the buoyant force being exerted. Think of a boat as an example. The boat is floating on the top of the water. If cargo is loaded into the boat, the boat sinks further into the water until the increased buoyant force matches the increased mass of the boat. But if the density of the object exceeds the density of the fluid, then increasing the mass of the object will not affect the buoyant force. So this is a bad choice.
2. The object's volume.
* Yes, this directly affects the buoyant force. So this is a good choice.
3. The density of the liquid.
* Yes, this directly affects the buoyant force. You can drop a piece of iron into water and it will sink. You could also drop that same piece of iron into mercury and it will float. The reason is that mercury has a much higher density than water. So this is a good choice.
4. Mass of the liquid
* No. Do not mistake mass for density. As a mental exercise, imagine the buoyant force on a small piece of metal dropped into a swimming pool. Now imagine the buoyant force on that same piece of metal dropped into a lake. In both cases, the buoyant force is the same, yet the lake has a far greater mass of water than the swimming pool. So this is a bad choice.
Answer:
C. her moment of inertia increases and her angular speed decreases
D. her moment of inertia increases and her angular speed decreases
Explanation:
The moment of inertia of a body is the sum of the products of an increment of mass and the square of its distance from the center of rotation. When a spinning person extends her arms, part of her mass increases its distance from the center of rotation, so increases the moment of inertia.
The kinetic energy of a spinning body is jointly proportional to the moment of inertia and the square of the angular speed. Hence an increase in moment of inertia will result in a decrease in angular speed unless there is a change in the rotational kinetic energy.
This effect is used by figure skaters to increase their spin rate by drawing their arms and legs closer to the axis of rotation. Similarly, they can slow the spin by extending arms and legs.
When the person extends her arms, her moment of inertia increases and her angular speed decreases.
_____
<em>Note to those looking for a letter answer</em>
Both choices C and D have identical (correct) wording the way the problem is presented here. You will need to check carefully the wording in any problem you may think is similar.
To solve this problem it is necessary to apply the concepts related to hydrostatic pressure or pressure due to a fluid.
Mathematically this pressure is given under the formula

Where,
= Density
h = Height
g = Gravitational acceleration
Rearranging in terms of g

our values are given as



Replacing we have


Therefore the gravitational acceleration on the planet's surface is
(Almost the gravity of the Earth)
Weight = (mass) x (acceleration of gravity).
On Earth, acceleration of gravity = 9.8 m/s² (rounded)
On Earth, 2.2kg of mass weighs (2.2kg) x (9.8 m/s²) =
21.6 kg-m/s² = <em>21.6 Newtons</em>.
(That's about 4.85 pounds.)