<h3>
Answer: 34</h3><h3 /><h3 /><h3 /><h3>
Step-by-step explanation: 2 – 8 - [- 4 – (-6 + 3 -9)] X ( -10 ÷2)</h3><h3>Así es como resolví esta pregunta: usé PEMDAS significa paréntesis, exponentes, multiplicación o</h3><h3> División, suma y resta...</h3><h3>Espero que la hayan resuelto bien!</h3>
The steps on the construction of a segment bisector by paper folding, and label the midpoint M is given below.
<h3>What are the steps of this construction?</h3>
1. First, one need to open a Compass so that it is said to be more than half the length of the said segment.
2. Without altering it, with the aid of the compass, do draw an art above and also below the said line segment from one of the segment endpoints.
3. Also without altering it and with use the compass, do draw another pair of arts from the other and points. One arc will be seen above the segment and the other or the second arc will be seen below.
4. Then do draw the point of intersection that is said to exist between the pair of arts below the line segment and also in-between the pair of arts as seen below the line segment
5. Lastly, do make use of a straight edge to link the intersection points between the both pair of arts.
Learn more about segment bisector from
brainly.com/question/24736149
#SPJ1
Answer:
0.65%, 9.2%, 40%, 656%
Step-by-step explanation:
see answer
Answer:
Step-by-step explanation:
To prove sin(a+b)*sin(a-b)=cos^2b-cos^2a
we simplify the left side sin(a+b)*sin(a-b) first
sin(a+b) = sin a cos b + cos a sin b
sin(a-b) = sin a cos b - cos a sin b
sin(a+b)*sin(a-b) = (sin a cos b + cos a sin b) x (sin a cos b -cos a sin b)
sin a cos b((sin a cos b + cos a sin b) - cos a sin b (sin a cos b + cos a sin b)
open the bracket
sin a cos b(sin a cos b) + sin a cos b(cos a sin b) -cos a sin b (sin a cos b)+ cos a sin b ( cos a sin b)
sin²a cos²b + sin a cos b cos a sin b - cos a sin b sin a cos b + cos²a sin²b
sin²a cos²b + 0 + cos²a sin²b
sin²a cos²b + cos²a sin²b
- sin²a = 1-cos² a
- sin²b = 1-cos² b
(1-cos² a)cos² b - cos² a(1-cos² b)
= cos² b - cos² a cos² b - cos² a +cos² a cos² b
cos² b - cos² a - cos² a cos² b + cos² a cos² b = cos² b - cos² a + 0
cos² b - cos² a
left hand side equals right hand side