Answer:
48.7 J
Explanation:
For a mass-spring system, there is a continuous conversion of energy between elastic potential energy and kinetic energy.
In particular:
- The elastic potential energy is maximum when the system is at its maximum displacement
- The kinetic energy is maximum when the system passes through the equilibrium position
Therefore, the maximum kinetic energy of the system is given by:

where
m is the mass
v is the speed at equilibrium position
In this problem:
m = 3.6 kg
v = 5.2 m/s
Therefore, the maximum kinetic energy is:

Electrical shock is most likely to be fatal when the path of the current is through the heart.
<span>v=40 <span><span>cm</span>s</span> speed of wave</span>
<span>λ=8 cm wavelength</span>
<span>f=? frequency of wave</span>
<span>v=λ⋅f</span>
<span>40=8⋅f</span>
<span>f=<span>408</span></span>
<span>f=5 <span>s<span>−<span>1 is the answer </span></span></span></span>