Answer:
distance difference would a) increase
speed difference would f) stay the same
Explanation:
Let t be the time the 2nd skydiver takes to travel, since the first skydiver jumped first, his time would be t + Δt where Δt represent the duration between the the first skydiver and the 2nd one. Remember that as t progress (increases), Δt remain constant.
Their equations of motion for distance and velocities are




Their difference in distance are therefore:


(As

So as time progress t increases, Δs would also increases, their distance becomes wider with time.
Similarly for their velocity difference


Since g and Δt both are constant, Δv would also remain constant, their difference in velocity remain the same.
This of this in this way: only the DIFFERENCE in speed stay the same, their own individual speed increases at same rate (due to same acceleration g). But the first skydiver is already at a faster speed (because he jumped first) when the 2nd one jumps. The 1st one would travel more distance compare to the 2nd one in a unit of time.
Answer:
a)1815Joules b) 185Joules
Explanation:
Hooke's law states that the extension of a material is directly proportional to the applied force provided that the elastic limit is not exceeded. Mathematically;
F = ke where;
F is the applied force
k is the elastic constant
e is the extension of the material
From the formula, k = F/e
F1/e1 = F2/e2
If a force of 60N causes an extension of 0.5m of the string from its equilibrium position, the elastic constant of the spring will be ;
k = 60/0.5
k = 120N/m
a) To get the work done in stretching the spring 5.5m from its position,
Work done by the spring = 1/2ke²
Given k = 120N/m, e = 5.5m
Work done = 1/2×120×5.5²
Work done = 60× 5.5²
Work done = 1815Joules
b) work done in compressing the spring 1.5m from its equilibrium position will be gotten using the same formula;
Work done = 1/2ke²
Work done =1/2× 120×1.5²
Works done = 60×1.5²
Work done = 135Joules
A=f/m
A=900/425
A=2.18
To determine acceleration you divide the force by the mass.
To solve this problem it is necessary to apply the concepts related to the Kinetic Energy and the Energy Produced by the heat loss. In mathematical terms kinetic energy can be described as:

Where,
m = Mass
v = Velocity
Replacing we have that the Total Kinetic Energy is



On the other hand the required Energy to heat up t melting point is


Where,
m = Mass
Specific Heat
Change at temperature
Latent heat of fussion
Heat required to heat up to melting point,




The energy required to melt is larger than the kinetic energy. Therefore the heat of fusion of lead would be 327 ° C: The melting point of lead.