Answer:

Explanation:
The Joule-Thomson coefficient is the ratio of the change of temperature to the change of pressure under isoenthalpic conditions:

Initial and final properties are:
. Superheated Vapor.
. Superheated Vapor.
The Joule-Thomson coefficient is approximately:


Answer:
If the car comes to a sudden stop, your body tends to keep moving forward.
Explanation:
Answer: mass for Pyrex glass 84.21g
mass for sand 61.6g
mass for ethanol 41.32g
mass for water 62.07g
Explanation
By definition specific heat is the amount of heat required to change the temperature of 1 kg mas by 1°C
Q=mcΔT is formula for specific heat
Q is heat transfer
m is mass
ΔT is change in temperature
c is specific heat
c of Pyrex glass= 0.75 j/g°C
c of sand = 0.84 j/g°C
c of ethanol= 2.42 j/g°C
c of water = 4.18 j/g°C
now we will make M(mass) the subject, so equation becomes
m=Q/cΔT
for
pyrex glass T<em>f=</em>55.4°C
m=1920/(55.4-25)*0.75
m=84.21g {after cutting J(joules) and °C we are left with g(grams)}
for
sand T<em>f</em>=62.1°C
m=1920/(62.1-25)*0.84
m=61.6g {after cutting J(joules) and °C we are left with g(grams)}
for
ethanol T<em>f</em>=44.2°C
m=1920/(44.2-25)*2.42
m=41.32g {after cutting J(joules) and °C we are left with g(grams)}
for
water T<em>f=</em>32.4°
m=1920/(32.4-25)*4.18
m=62.07g {after cutting J(joules) and °C we are left with g(grams)}
i hope you understand the solution, thank you.
Answer:
T=+1.133N
Explanation:
Tension and weight are forces that have opposite directions
Weight is negative (downward)
W=m*g= 0.11kg*(-9.8m/s^2)
W= -1.078N
Tension is possitive (upward)
The total force will be the sum of both (the difference taking in consideration the direction)
Ft= T+W
Also the total force is the product of the mass due to acceleration:
Ft=m*a
Ft= +0.11kg*0.5m/s^2
Ft=+0.055N (upward)
Tension will be the difference between Ft and W:
T= Ft-W
T=+0.055N-(-1.078N)
T=+1.133N
Because the effective charge of the nucleus increase from left to eight due to the increasing number of protons.
The greater charge pulls the electrons closer to the nucleus, decreasing the radius.