I am assuming that you can only pick one answer per question.
Let's imagine there are two questions on the test. I would:
1) Consider the first question. How many possible ways could you answer it?
2) Consider the second question. How many ways can you answer that?
If you wrote out all the possibilities, how many combinations of answers would you get across the two questions?
Multiply the first equation with (-1)
you should get this
-6r + 3t = -6
6r + 8t = -16
start to eliminate
11t = -22
divide by 11
t = -2
substitute
6r - 3(-2) = 6
6r + 6 = 6
6r = 6 - 6
6r = 0
r=0
She drinks 1/4th of the bottle and then another 1/6th of the bottle. So he drinks 3/12+2/12 of a bottle which is 5/12
The answer is 93 to 31 :)
Answer:
![f(x)=4\sqrt[3]{16}^{2x}](https://tex.z-dn.net/?f=f%28x%29%3D4%5Csqrt%5B3%5D%7B16%7D%5E%7B2x%7D)
Step-by-step explanation:
We believe you're wanting to find a function with an equivalent base of ...
![4\sqrt[3]{4}\approx 6.3496](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B4%7D%5Capprox%206.3496)
The functions you're looking at seem to be ...
![f(x)=2\sqrt[3]{16}^x\approx 2\cdot2.5198^x\\\\f(x)=2\sqrt[3]{64}^x=2\cdot 4^x\\\\f(x)=4\sqrt[3]{16}^{2x}\approx 4\cdot 6.3496^x\ \leftarrow\text{ this one}\\\\f(x)=4\sqrt[3]{64}^{2x}=4\cdot 16^x](https://tex.z-dn.net/?f=f%28x%29%3D2%5Csqrt%5B3%5D%7B16%7D%5Ex%5Capprox%202%5Ccdot2.5198%5Ex%5C%5C%5C%5Cf%28x%29%3D2%5Csqrt%5B3%5D%7B64%7D%5Ex%3D2%5Ccdot%204%5Ex%5C%5C%5C%5Cf%28x%29%3D4%5Csqrt%5B3%5D%7B16%7D%5E%7B2x%7D%5Capprox%204%5Ccdot%206.3496%5Ex%5C%20%5Cleftarrow%5Ctext%7B%20this%20one%7D%5C%5C%5C%5Cf%28x%29%3D4%5Csqrt%5B3%5D%7B64%7D%5E%7B2x%7D%3D4%5Ccdot%2016%5Ex)
The third choice seems to be the one you're looking for.